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ABSTRACT

In this paper, we propose some sparsity aware algorithms,
namely the Recursive least-Squares for sparse systems (S-
RLS) and l0-norm Recursive least-Squares (l0-RLS), in order
to exploit the sparsity of an unknown system. The first al-
gorithm, applies a discard function on the weight vector to
disregard the coefficients close to zero during the update pro-
cess. The second algorithm, employs the sparsity-promoting
scheme via some non-convex approximations to the l0-norm.
In addition, we consider the respective versions of these al-
gorithms in data-selective versions in order to reduce the
update rate. Simulation results show similar performance
when comparing the proposed algorithms with standard Re-
cursive Least-Squares (RLS) algorithm while the proposed
algorithms require lower computational complexity.

Index Terms— adaptive filtering, data-selective, sparsity,
discard function, sparsity-promoting scheme

1. INTRODUCTION

Sparse signals and systems are found in a wide diversity of
areas and scenarios such as communications, control, acous-
tics, spectral sensing, channel equalization, echo cancellation,
and system identification. Recently, it has been realized that
by exploiting signal sparsity, significant improvement in con-
vergence rate and steady-state performance can be obtained.
Unfortunately, traditional adaptive algorithms such as least-
mean square (LMS) based algorithms and the recursive least
squares (RLS) [1,2] do not take into consideration the sparsity
in the signal or system models. However, many extensions of
the classical algorithms were proposed aiming at exploiting
sparsity.
A recent approach to exploit the system sparsity is

achieved by utilizing discard function [3]. Algorithms em-
ploying the discard function avoid updating the coefficients
close to zero, as a result reducing the computational burden.
This idea is motivated by the inherent relative importance of
the estimated coefficients in practical applications. In fact,
in a sparse system a few coefficients have most of the en-
ergy, whereas the other coefficients are close to zero. As
by-product, algorithms applying the discard function require

lower computational complexity than the traditional algo-
rithms.
Another interesting approach to exploit sparsity is to in-

clude a sparsity-promoting penalty function into the origi-
nal objective function of classical algorithms [4]. For this
purpose, most algorithms apply the l1-norm as the sparsity-
promoting penalty [5–9], but recently an approximation to
the l0-norm has shown some advantages [4, 10–12]. Adding
this penalty function to the RLS cost function increases the
computational complexity. Also, there are some other al-
gorithms to exploit the sparsity such as proportionate algo-
rithms [13–16] leading to even higher computational com-
plexity.
In this paper, we introduce some sparse-aware RLS al-

gorithms employing the discard function and the l0-norm ap-
proximation. The first proposed algorithm, the RLS for sparse
systems (S-RLS), gives low weight to the coefficients close
to zero and exploits system sparsity with low computational
complexity whereas the second algorithm, the l0-norm RLS
(l0-RLS), has higher computational complexity. In both al-
gorithms, in order to reduce further the computational load
we apply a data-selective strategy [17] leading to the data-
selective S-RLS (DS-S-RLS) and the data-selective l0-RLS
(DS-l0-RLS) algorithms. That is, the proposed algorithms up-
date the weight vector if the output estimation error is larger
than a prescribed value. Applying this strategy, both algo-
rithms attain lower computational complexity compared to
the RLS algorithm.
The rest of this paper is organized as follows. The pro-

posed S-RLS and l0-RLS algorithms along with their data-
selective versions are presented in Sections 2 and 3, respec-
tively. Simulations are presented in Section 4 and Section 5
contains the conclusions.

2. RECURSIVE LEAST-SQUARES ALGORITHM
EXPLOITING SPARSITY

In Subsection 2.1, we derive the S-RLS algorithm that ex-
ploits the sparsity of the estimated parameters by giving low
weight to the small coefficients. For this purpose, the strat-
egy consists in multiplying the coefficients of the sparse filter
which are close to zero by a small constant. Then, in Subsec-
tion 2.2, we include a discussion of some characteristics of
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Fig. 1. (a) Discard function fε(w) for ε = 10−4; (b) Geman-
McClure function for β = 5.

the proposed algorithm. Subsection 2.3 briefly describes the
DS-S-RLS algorithm.

2.1. Derivation of the S-RLS algorithm

Defining the discard function fε : R → R for the positive
constant ε as follows

fε(w) =

{
w if |w| > ε

0 |w| ≤ ε
. (1)

where function fε discards the values of w which are close
to zero. The parameter ε indicates how close to zero a coef-
ficient should be discarded. The value of ε is chosen based
on some a priori information about the relevance of a given
coefficient to the sparse system. The function fε(w) is illus-
trated in Figure 1(a) for ε = 10−4. As can be observed, fε(w)
is not differentiable at ±ε. To address the non-differentiable
property of fε(w), we consider the derivative of fε(w) at
+ε and −ε as equal to the left and the right derivatives, re-
spectively. Therefore, the derivative of fε(w) at ±ε is zero.
Denote the discard vector function fε : RN+1 → R

N+1 as
fε(w) = [fε(w0), · · · , fε(wN )]T .
The objective function of the S-RLS algorithm is given as

follows

min ξd(k) =

k∑
i=0

λk−i[d(i)− xT (i)fε(w(k))]2 (2)

where d(i) ∈ R is the desired signal and x(i) ∈ R
N+1 is the

input-signal vector,

x(k) = [x(k) x(k − 1) · · · x(k −N)]T (3)

The parameter λ is an exponential weighting factor that
should be selected in the range 0 � λ ≤ 1. Note that the
objective function is quadratic with respect to the discard
function which turn leads to many equivalent maps of the
weight function.

By differentiating ξd(k) with respect to w(k), we obtain

∂ξd(k)

∂w(k)
=

− 2

k∑
i=0

λk−iFε(w(k))x(i)[d(i) − xT (i)fε(w(k))] (4)

where Fε(w(k)) is the Jacobian matrix of fε(w(k)). By
equating the above equation to zero, we will find the optimal
vectorw(k) that minimizes the least-square error, as follows

−
k∑

i=0

λk−iFε(w(k))x(i)xT (i)fε(w(k))

+
k∑

i=0

λk−iFε(w(k))x(i)d(i) = 0 (5)

Therefore,

fε(w(k)) =
[ k∑

i=0

λk−iFε(w(k))x(i)xT (i)
]
−1

×

k∑
i=0

λk−iFε(w(k))x(i)d(i) (6)

Note thatFε(w(k)) is a diagonal matrix with diagonal entries
equal to zero or one. Indeed, for the components of w(k)
whose absolute values are larger than ε, their corresponding
entries on the diagonal matrix Fε(w(k)) are one, whereas the
remaining entries are zero. Hence,

Fε(w(k))x(i)xT (i) = F2
ε(w(k))x(i)xT (i)

= Fε(w(k))(xT (i)Fε(w(k)))TxT (i)

= Fε(w(k))x(i)xT (i)Fε(w(k)) (7)

By utilizing (7) in (6) and replacing fε(w(k)) by w(k + 1),
we get

w(k + 1) =
[ k∑

i=0

λk−iFε(w(k))x(i)xT (i)Fε(w(k))
]
−1

×

k∑
i=0

λk−iFε(w(k))x(i)d(i) = R−1
D,ε(k)pD,ε(k) (8)

whereRD,ε(k) and pD,ε(k) are called the deterministic cor-
relation matrix of the input signal and the deterministic cross-
correlation vector between the input and desired signals, re-
spectively. Whenever i-th diagonal entry of matrix Fε(w(k))
is zero, it is replaced by a small power-of-two (e.g., 2−5) mul-
tiplied by the sign of the component wi(k) in order to avoid
that matrixRD,ε(k) becomes ill conditioned. Then using the
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Table 1.
S-RLS Algorithm

Initialization
SD,ε(−1) = δI

where δ can be inverse of the input signal power estimate
pD,ε(−1) = [0 0 · · · 0]T

w(−1) = [1 1 · · · 1]T

Do for k ≥ 0
SD,ε(k) as in Equation (9)
pD,ε(k) = λpD,ε(k − 1) + Fε(w(k))x(k)d(k)
w(k + 1) = SD,ε(k)pD,ε(k)

end

matrix inversion lemma, the inverse of the deterministic cor-
relation matrix can then be calculated in the following form

SD,ε(k) = R−1
D,ε(k) =

1

λ

[
SD,ε(k − 1)

−
SD,ε(k − 1)Fε(w(k))x(k)xT (k)Fε(w(k))SD,ε(k − 1)

λ+ xT (k)Fε(w(k))SD,ε(k − 1)Fε(w(k))x(k)

]

(9)

Therefore,

w(k + 1) = SD,ε(k)pD,ε(k) (10)

2.2. Discussion of the S-RLS algorithm

The update equation of the S-RLS algorithm is similar to the
update equation of the RLS algorithm, but the former gives
importance only to the subset of coefficients of w(k) whose
absolute values are larger than ε. The matrix Fε(w(k)) de-
fines the important coefficients ofw(k).
Unlike classical RLS algorithm in which the initialization

of the weight vector is often chosen as w(0) = 0, this same
procedure cannot be applied to the proposed algorithm. In-
deed, for the S-RLS algorithm, each of the coefficients should
be initialized as |wi(0)| > ε for i = 0, 1, . . . , N .

2.3. DS-S-RLS algorithm

In this subsection, our goal is to reduce the update rate of
the S-RLS algorithm. In fact, when the current weight vec-
tor is acceptable, i.e., the output estimation error is small,
we can save computational resources by avoiding new up-
date. The data selective S-RLS (DS-S-RLS) algorithm up-
dates whenever the output estimation error is larger than a pre-
scribed value γ, i.e., when |e(k)| = |d(k) − wT (k)x(k)| >
γ. Therefore, the DS-S-RLS algorithm reduces the compu-
tational complexity by avoiding updadtes whenever the esti-
mate is acceptable.

3. l0-NORM RECURSIVE LEAST-SQUARES
ALGORITHM

In the previous section, we exploit the systems sparsity uti-
lizing discard function. Another interesting approach to ex-
ploit the system sparsity can be derived by using l0-norm [4]

leading to the l0-RLS algorithm. However, the resulting op-
timization problem of l0-norm has difficulties due to the dis-
continuity of the l0-norm. Thus, we use the Geman-McClure
function (GMF) [18] to approximate the l0-norm. The GMF
is given as follows, Figure 1(b),

Gβ(w) =

N∑
i=0

(1−
1

1 + β|w(i)|
) (11)

where β ∈ R+ is a parameter responsible for controlling
the agreement between the quality of the approximation and
smoothness of Gβ . The gradient of Gβ is defined as follows

∇Gβ(w) � gβ(w) � [gβ(w(0)) · · · gβ(w(N))]T (12)

where gβ(w) �
∂Gβ(w)

∂w
is given by

gβ(w) =
βsgn(w)

(1 + β|w|)2
(13)

where sgn(·) is the sign function.
The objective function of the l0-RLS algorithm is given

by

min
k∑

i=0

λk−i[d(i)− xT (i)w(k)]2 + α‖w(k)‖0 (14)

where α ∈ R+ is the weight given to the l0-norm penalty.
Replacing ‖w(k)‖0 by its approximation, we obtain

min

k∑
i=0

λk−i[d(i)− xT (i)w(k)]2 + αGβ(w(k)) (15)

By differentiating the above equation and equating the result
to zero, we get

w(k) =
[ k∑

i=0

λk−ix(i)xT (i)
]
−1

×
(
(

k∑
i=0

λk−ix(i)d(i))

−
α

2
gβ(w(k))

)
= R−1

D (k)
(
pD(k)−

α

2
gβ(w(k))

)
(16)

Using the matrix inversion lemma, the update equation of the
l0-RLS algorithm is given as follows

w(k) = SD(k)
(
pD(k)−

α

2
gβ(w(k − 1))

)
(17)

where a same strategy as the PASTd (projection approxima-
tion subspace tracking with deflation) [19] is employed and
gβ(w(k)) is replaced by gβ(w(k − 1)) in order to form the
recursion. Also, pD(k) and SD(k) are given as follows

pD(k) = λpD(k − 1) + d(k)x(k) (18)

SD(k) =
1

λ

[
SD(k − 1)−

SD(k − 1)x(k)xT (k)SD(k − 1)

λ+ xT (k)SD(k − 1)x(k)

]
(19)
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Table 2. The coefficients of unknown systemswo andw′

o

wo 24e-2 2e-8 -23e-2 -3e-7 5e-1 -1e-9 2e-1 1e-7 -5e-8 12e-6 1e-8 -5e-6 4e-6 -1e-7 -2e-1
w′

o 2e-7 -21e-10 17e-8 21e-8 -3e-7 24e-2 7e-1 2e-1 33e-2 -6e-1 -5e-7 18e-9 -5e-7 21e-8 -11e-8

Note that Equation (17) does not require to be iterated.
Remark 1: Similarly to the discussion in Subsection 2.3,

the DS-l0-RLS algorithm for sparse systems can be derived
by implementing an update in the l0-RLS algorithmwhenever
the output estimation error is larger than a prescribed value γ,
reducing the update rate.

4. SIMULATIONS

In this section, RLS, S-RLS, l0-RLS, Adaptive Sparse Varia-
tional Bayes iterative scheme based on Laplace prior (ASVB-
L) [20], Zero-Attracting LMS (ZA-LMS), DS-S-RLS, DS-
l0-RLS, data selective ZA-LMS (DS-ZA-LMS), and data-
selective ASVB-L (DS-ASVB-L) algorithms are tested to
identify three unknown sparse systems of order 14. The first
model is an arbitrary sparse system wo, the second model
is a block sparse system w′

o, and the third model, w′′

o , is a
sparse system which its coefficients changes at 500th and
1000th iterations. The coefficients of wo and w′

o are listed
in Table 2. The input is an autoregressive signal generated by
x(k) = 0.95x(k − 1) + n(k − 1). The signal-to-noise ratio
(SNR) is set to be 20 dB, meaning that the noise variance is
σ2
n = 0.01. The bound on the estimation error is set to be

γ =
√
5σ2

n. The initial vectorw(0) and λ are [1, · · · , 1]T and
0.97, respectively. The parameter δ is 0.2 and the constant ε is
chosen as 0.015. For DS-l0-RLS and l0-RLS algorithms, the
parameters α and β are chosen as 0.005 and 5, respectively.
The parameters μ and ρ in ZA-LMS algorithm are chosen as
0.01 and 0.0005, respectively. The depicted learning curves
represent the results of averaging of the outcomes of 4000 tri-
als. Figures 2(a), 2(b), and 2(c) show the learning curves for
the RLS, S-RLS, l0-RLS, ASVB-L, ZA-LMS algorithms to
identify the unknown systems wo, w′

o, and w′′

o , respectively.
Figure 2(d) illustrates the learning curves for the DS-ZA-
LMS, DS-S-RLS, DS-l0-RLS, and DS-ASVB-L algorithms
to identify the unknown system wo. The average number
of updates implemented by the DS-ZA-LMS, DS-S-RLS,
DS-l0-RLS, and DS-ASVB-L algorithms are 44.5%, 10.3%,
9.8%, and 7.9%, respectively.
Observe that, in every scenario we tested, the S-RLS and

the l0-RLS algorithms performed as well as the RLS algo-
rithm. The DS-S-RLS and DS-l0-RLS algorithms have lower
computational complexity. As can be seen, their performance
is close to the DS-ASVB-L algorithm while having lower
computational complexity. Also, note that the DS-ZA-LMS
algorithm has larger update rate and higher MSE compared to
the proposed algorithms.
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Fig. 2. The learning curves of the RLS, the S-RLS, the l0-
RLS, the ASVB-L, and ZA-LMS algorithms applied to iden-
tify: (a) wo; (b) w′

o; (c) w′′

o . (d): The learning curves of
the DS-ZA-LMS, the DS-S-RLS, the DS-l0-RLS, and the DS-
ASVB-L algorithms applied onwo.

5. CONCLUSIONS

In this paper, we have proposed the S-RLS and the l0-RLS
algorithms to exploit the sparsity in the involved signal mod-
els. Also, we have employed the data-selective strategy to im-
plement an update when the output estimation error is larger
than a pre-described positive value leading to reduced update
rate and lower computational complexity. The simulation re-
sults have shown the excellent performance of the proposed
algorithms as compared to the standard RLS algorithm being
competitive with the recent proposed state-of-the-art ASVB-
L algorithm which requires much more computations.
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