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ABSTRACT

The ZA-NLMS (for zero-attractor) represents arguably the
seminal sparsity-aware gradient adaptive algorithm. As it is
constraint by the ℓ1-norm of the filter weights, the under-
lying problem turns convex, hence with unique solution (in
expected sense). Despite these friendly properties, the algo-
rithm convergence and, more important, the best-performing
sparsity tradeoff are yet to be effectively studied. This pa-
per presents a comprehensive analytical study on ZA-NLMS’
convergence, which results in the optimal (constant) sparsity
tradeoff. The value of this decisive hyperparameter from a
practitioner point of view turns out related to the 3/2-power
of the adaptive filter length. This outcome, difficult to argue
intuitively, as well as the convergence model, have been ex-
haustively validated with numerical experiments.

Index Terms— Sparsity, NLMS, ℓ1 norm, modal analy-
sis, mean square deviation, optimal tradeoff.

1. INTRODUCTION

Electrical, acoustic echo plants [1–3] and multi-path wireless
communication channels [4–6] are few examples of sparse
systems, e.g., those with a small fraction of their coeffi-
cients relevant or non-zero. The adaptive identification of
sparse systems arouses currently large interest [7–13] and
it is supported by solid theoretical foundations [14, 15]. The
zero-attracting (ZA) least-mean-square (LMS) [8] and NLMS
(for normalized) algorithms represents the seminal work on
sparsity-aware adaptive algorithms, founded on the mini-
mization of the ℓ1 norm on the adaptive system coefficients.
For sparse plants, the ZA-NLMS exhibits larger robustness
against additive noise than the unconstrained NLMS [10,16].

Let us consider the output of a noisy linear plant

dn = hT xn + vn (1)

where n is time, xn = [xn, · · · , xn−N+1]
T contains the

last N samples of the input signal xn, h corresponds to the
N -length impulse response of the plant, vn is additive white
Gaussian noise of power σ2

v , and (·)T denotes transpose.

Given a linear filter wn = [w0,n, · · · , wN−1,n]
T , the ZA-

NLMS algorithm updates the identification filter coefficients
according to the well-known rule

wn+1 = wn + µ
enxn

∥xn∥2+ϵ
− γ sgn(wn) (2)

where en is the error between the noisy plant and the filter

en = dn −wT
nxn. (3)

µ is the step size, ϵ is a small positive value to prevent division
by zero,1 sgn(w) = w/|w|, and γ is the tradeoff between
estimation error and sparseness of the solution.

Recently, in [16], we proposed an adaptive tradeoff for the
ZA-NLMS, a result from equating the convergence modes of
significant and negligible taps. Even though the methodol-
ogy was somewhat unorthodox, the resulting “instantaneous”
tradeoff γn was proven numerically to perform nearly opti-
mal. In this paper we follow a different approach in the anal-
ysis of the (constant) optimal tradeoff γ, with a methodology
similar to the one we used recently for the ℓ0-NLMS algo-
rithm [17],2 which is based on the minimization of the mean
square deviation (MSD) in steady state. Similar convergence
analyses have been previously attempted in [18, 19]. How-
ever, those related works have failed to deliver not only in-
sightful conclusions therefrom, but also an explicit expression
for the optimal sparsity tradeoff. With our present work we
aim to bridge that gap.

The organization of the paper follows: The mean bias
and mean square deviation of the ZA-NLMS is presented in
Sec. 2; the sparsity tradeoff that makes minimum the MSD in
steady state is derived in Sec. 3; the numerical validation is
brought in Sec. 4; finally, the conclusions close the paper.

2. ZA-NLMS MODAL ANALYSIS

By replacing (3) into (2), and defining the misalignment

gn = h−wn (4)
1For the sake of simplicity in the notation, we drop ϵ in what follows.
2ℓ0-NLMS is known to beat ℓ1- or ZA-NLMS; however, the convergence

analysis presented hereby has singular aspects that make such a study very
appealing for studying other sparsity-aware NLMS adaptive algorithms.
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the deviation update equation of the ZA-NLMS (2) can be
written as

gn+1 =

(
I− µ

xnx
T
n

∥xn∥2

)
gn−µ

vnxn

∥xn∥2
+γ sgn(h−gn). (5)

In order to study the ZA-NLMS and its performance,
rather than starting from (5), we acknowledge that the N
plant taps can be classified into negligible (zero) taps and
significant taps. Hence, the plant output (1) can be written as

dn = h′Tx′
n + h′′Tx′′

n + vn (6)

where vectors h′ and h′′ contain the significant and zero taps
respectively (hence, h′′ = 0), and vectors x′

n and x′′
n contain

the input samples accordingly. We define ρ to be the sparsity
degree of the plant; hence the number of elements in x′

n is
ρN , and that length in x′′

n is thus (1 − ρ)N . The estimation
error en (3) can be written accordingly

en = g′T
n x′

n + g′′T
n x′′

n + vn (7)

where g′
n = h′ −w′

n and g′′
n = h′′ −w′′

n = −w′′
n.

By using (7), it is simple to deduce that the global devia-
tion update (5) can be split in the following two equations

g′
n+1 = (I−A′

n)g
′
n−Bng

′′
n−

µvnx
′
n

∥xn∥2
+γsgn(h′−g′

n) (8)

g′′
n+1 = (I−A′′

n)g
′′
n −BT

ng
′
n − µvnx

′′
n

∥xn∥2
− γsgn(g′′

n) (9)

where A′
n = µx′

nx
′T
n /∥xn∥2, A′′

n = µx′′
nx

′′T
n /∥xn∥2, and

Bn = µx′
nx

′′T
n /∥xn∥2.

Throughout this study the following assumptions are
made: vectors gn, xn and vn are mutually independent
(which extends directly to the mutual independence within
the same taps category, i. e. all g′

n, x′
n, g′′

n, x′′
n, vn are mutu-

ally independent.), the input xn is white3 Gaussian of power
σ2
x, for the sake of analytical simplicity we assume the values

in the plant taps h′ to be of a similar magnitude σh: this as-
sumption guarantees that the random components in g′

n can
be considered independent and identically distributed.

2.1. Mean Analysis

For moderate SNR and for significant taps it can be assumed
that |h′| > |g′

n|, and given that for large N , E
{
A′

n

}
≃

µE
{
x′
nx

′T
n

}
/E

{
∥xn∥2

}
= (µ/N) I, the expectation on (8)

and (9) yields

δ′n+1 =
(
1− µ

N

)
δ′n + γ sgn(h′) (10)

3The results of this paper can be extended to coloured inputs, by using a
“whitening” pre-processing such as the subband NLMS [20, 21].

where δ′n , E
{
g′
n

}
. The previous result has been deduced

for moderate SNR and adequate tradeoff γ,4 and comparable
results have been reported in [8, 18, 19].

As zero-mean weight initialization implies

δ′0 , E{g′
0} = E{h′ −w′

0} = h′ − E{w′
0} = h′ (11)

the sign of the misalignment bias (10) turns out equal to the
sign of the plant taps, that is

sgn(δ′n) = sgn(h′). (12)

On the other hand, it is simple to show that the misalignment
bias in negligible taps is null, E

{
g′′
n

}
= 0, a statement sug-

gested also in [8, 18, 19].

2.2. MSD Analysis

Let Φ′2
n = E

{
∥g′

n∥2
}

and Φ′′2
n = E

{
∥g′′

n∥2
}

be the MSD of
significant and negligible taps respectively.

2.2.1. Significant Taps

The mean square deviation of (8) yields

Φ′2
n+1 = E

{
g′T
n (I−A′

n)
T (I−A′

n)g
′
n

}
+ E

{
g′′T
n B′T

n B′
ng

′′
n

}
+

σ2
v

σ2
x

µ2ρ

N + 2
+ γ2ρN

+ 2γE
{
g′T
n (I−A′

n)
T sgn(h′ − g′

n)
}
. (13)

The first term in (13) is simplified as

E
{
∥(I−A′

n)g
′
n∥2

}
=

(
1− 2µ

N
+

µ2(2+ρN)

N(N + 2)

)
Φ′2

n . (14)

The second term in (13) simplifies in

E
{
g′′T
n B′T

n B′
ng

′′
n

}
=

µ2ρ

N + 2
Φ′′2

n . (15)

For moderate SNR and given the sign relation between
plant taps and respective misalignment (12), we are in posi-
tion to simplify the last term in (13) as follows

E
{
g′T
n (I−A′

n) sgn(h
′−g′

n)
}

=
(
1− µ

N

)∥∥δ′n∥∥1 . (16)

Note that it is the absolute norm of δ′n that matters in the MSD
analysis. This invites us to collect the evolution (10) in form
of the global absolute mean ∥δ′n∥1 as follows

∆′
n+1 , ∥δ′n+1∥1 =

(
1− µ

N

)
∆′

n + γρN . (17)

Substituting (14)–(17) into (13) results finally in

Φ′2
n+1 =

(
1− 2µ

N
+

µ2(2 + ρN)

N(N + 2)

)
Φ′2

n +
µ2ρ

N + 2
Φ′′2

n

+ γ2ρN + µ2 σ
2
v

σ2
x

ρ

N + 2
+ 2γ

(
1− µ

N

)
∆′

n . (18)

4The case of very low SNR levels and large tradeoff γ are not covered by
the analysis presented in this paper.
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Φ′2
n+1

Φ′′2
n+1

∆′
n+1

 =

1− a′ b′′ 2γ(1− µ
N )

b′ 1− a′′ 0
0 0 1− µ

N

Φ′2
n

Φ′′2
n

∆′
n

 + γ

 0
−c′′ Φ′′

n

ρN

 + γ2N

 ρ
1− ρ
0

 +
µ2

N + 2

σ2
v

σ2
x

 ρ
1− ρ
0

 . (21)

2.2.2. Negligible Taps

With the previous strategy, it is simple to deduce the MSD
update equation for negligible taps. Beside the simplifications
similar to (13)–(15), the following expectation becomes

E
{
g′′T
n (I−A′

n) sgn(g
′′
n)
}
=

(
1− µ

N

)
E
{
∥g′′

n∥1
}

(19)

which can be approximated for moderate SNR as

E
{
∥g′′

n∥1
}
= κ

√
(1− ρ)N Φ′′

n (20)

where κ is a parameter that depends on distribution of the
negligible tap misalignment, namely 1/

√
2 and

√
2/π for

Laplace and Gaussian respectively.5 Therefore, the MSD up-
date equation for the zero taps results in the following com-
pact expression

Φ′′2
n+1 =

(
1− 2µ

N
+

µ2(2 + (1− ρ)N)

N(N + 2)

)
Φ′′2

n

+
µ2(1− ρ)

N + 2
Φ′2

n + γ2(1− ρ)N + µ2 σ
2
v

σ2
x

(1− ρ)

N + 2

− 2γκ
(
1− µ

N

)√
(1− ρ)N Φ′′

n . (21)

It is important to note the negative sign in the last term in (21),
which comes to say that the ZA update reduces the misalign-
ment in zero taps (as proven in [16]). In contrast the positive
sign of the γ-dependent terms in the update for significant
taps (18), which obviously has the opposite effect.

3. OPTIMAL TRADEOFF PARAMETER

We can rewrite the previous mean and MSD dynamic equa-
tions (17), (18) and (21) in matrix form as in (21), where the
constants a′, a′′, b′, b′′ and c′′ can be easily deduced there-
from. It is worth remarking that this dynamic rule (21) pos-
sesses a quadratic character with respect to Φ′′

n.
In the steady state (n → ∞), Φ′

n+1 = Φ′
n and Φ′′

n+1 =
Φ′′

n, (21) yields the solution to the steady-state misalignment

Φ2
∞ = Φ′2

∞ +Φ′′2
∞ (22)

5It has been widely accepted that the misalignment g′′
n follows a Gaussian

distribution. However, invoking the central limit theorem here is not a valid
argument because the ZA update is based on a single random source (the
sign of the weight itself). In fact, for useful γ values, e.g. those that give an
edge versus the plain NLMS, the misalignment turns long-tailed with positive
excess kurtosis (according to our empirical observation). We acknowledge
this issue by considering the Laplace distribution in our analysis as well.

where Φ′
∞ and Φ′′

∞ result from solving the quadratic system a′ −b′′ −γc′

−b′ a′′ 0

0 0 µ/N


Φ

′2
∞

Φ′′2
∞

∆′
∞

+γc′′

 0

Φ′′
∞

0

 =

 d′

d′′

γρN

 (23)

and where c′, d′, and d′′ can be deduced from (21). It becomes
obvious that the bias magnitude in the steady-state is

∆′
∞ =

γρN2

µ
(24)

which simplifies (23) in[
a′ −b′′

−b′ a′′

][
Φ′2

∞

Φ′′2
∞

]
+ γc′′

[
0

Φ′′
∞

]
=

[
d′ + γc′∆′

∞

d′′

]
. (25)

Equation (25) has an explicit real solution, which due to space
constraints we must omit hereby. By minimizing the mean-
square deviation (MSD) (22) resulting from (25) with respect
to γ such that

∂ Φ2
∞

∂γ
= 0 (26)

and by assuming large N ,6 the optimal tradeoff can be closely
approximated in the following readily expression

γZA , αµ,ρ

2

(
1− ρ

√
ρ+ 0.1

√
µ

)( µ

N

)3/2(σv

σx

)
(27)

where
αµ,ρ = µ0.3(1− ρ)0.1 (28)

acts as correction term for low µ values.
The sparsity degree ρ has a big impact on the tradeoff

(27): the smaller ρ is, the larger the tradeoff; for a regular
plant, ρ → 1, the tradeoff tends to zero, hence the optimal
algorithm becomes the plain NLMS. An interesting result,
hard to argue with intuition, is the dependance on the 3/2
power of µ/N ;7 this power rule appears to result from the
global steady-state bias magnitude (24), which depends on
the square of N .

6As the statement (26) results in a very long equation, and given that
sparsity-aware algorithms are meant to be used with a large number of taps
N , we present hereby the asymptotic formula of the sparsity tradeoff.

7It is worth comparing this result (27) with the optimal tradeoff for ℓ0-
NLMS, which we deduced in [17] and we bring hereby

γℓ0 ,
√

2

2− µρ

( µ

N

)(
σv

σx

)
. (29)
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4. SIMULATION RESULTS

In this section, the empirical evaluation of the steady-state
performance (22) of the ZA-NLMS algorithm is conducted,
with emphasis on the validation of the optimal sparsity-
tradeoff (27). In all experiments the location of the significant
taps are selected randomly, their magnitude generated from
a Gaussian of variance σ2

h (this setting supersedes the initial
assumption of significant taps being nearly equal in ampli-
tude), N = 100, and both input signal with σ2

x = 1 and noise
are white Gaussian. The step size was set µ = 1 for faster
convergence, and κ = 1/

√
2 to model the zero taps misalign-

ment as Laplacian distribution. The performance evaluation
is carried out with the steady-state mean square deviation
SS-MSD = ∥h−w∞∥22 over 200 Monte Carlo simulations.

10-5 10-4 10-3 10-2
γ

10-1

100

101

a)

10-6 10-5 10-4 10-3γ
10-3

10-2

10-1

b)

Fig. 1. Analytical (22) (solid) and empirical (×) SS-MSD
with respect to tradeoff γ for: a) different noise levels (bottom
to top) σ2

v = {0.1,
√
0.1, 1,

√
10, 10} with ρ = 5%, and b)

different sparsity (bottom to top) ρ = {1, 5, 10, 20, 50}% with
σ2
v = 0.01; locus (dotted) of optimal sparsity tradeoff (27).

In the first experiment, the SS-MSD is exhaustively eval-
uated against the tradeoff γ for different noise levels σ2

v and a
small sparsity degree. The results, brought in Fig. 1.a), throw
a very good agreement with the analytical predictions (22).
Under low SNR and large sparsity tradeoff the empirical re-
sults and the theoretical model suffer an expected mismatch,
a situation that is not covered by our study because it has little
interest. It is very relevant that the optimal tradeoff (27) fol-
lows closely the empirical trend of minimum SS-MSD. The
previous methodology is repeated this time for different spar-
sity degrees ρ and one noise level. Fig. 1.b) shows the match
between the empirical and the analytical model (22). The op-
timal tradeoff outlines the minimum SS-MSD locus, such that
for regular plants (ρ > 50%) the optimal ZA-NLMS becomes
essentially the regular NLMS.

The last experiment deals with the validation of the 3/2-
power rule of the optimal tradeoff (27) with respect to N . Dif-
ferent cases of filter length N were considered, while sparsity
degree and noise level were kept constant. For each case, the
best performing tradeoff corresponds to the locus of the min-
imum empirical SS-MSD in a dense γ-grid. Fig. 2 reveals
the results of this experiment, throwing an extremely accurate
match between theory and empirical validation. This result is
probably the main surprising outcome of the present work.

102 103N
10-6

10-5

10-4

10-3

γ

Fig. 2. Empirical (×) and theoretical (solid) optimal tradeoff.
Sparsity degree ρ = 5% and noise σ2

v = 0.01.

5. CONCLUSIONS

The concept of significant and negligible filter taps have al-
lowed us to derive the theoretical convergence model of the
ZA-NLMS algorithm. This approach facilitated the deriva-
tion of the optimal sparsity tradeoff that acomplishes to the
minimum mean deviation in steady state. The resulting opti-
mal tradeoff depends on the environment parameters such as
the filter length, step size, plant sparsity and SNR. The ex-
tension of this work into very low SNR scenarios, as well as
developing the numerical framework for estimating the spar-
sity degree in the practice are in our current research agenda.
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