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ABSTRACT

In this paper, we study distributed decision-making over

mobile adaptive networks where nodes in the network col-

lect data generated by two different models. The nodes need

to decide which model to estimate and track. However, they

do not know beforehand which model they observe. There-

fore, an effective clustering technique is needed. We apply

a clustering technique that reduces the clustering error. Fur-

thermore, introduce an additional term to the motion model to

ensure that the nodes move coherently without fragmentation

in the network during the decision-making process. Once the

network reaches agreement on the desired model, the cooper-

ation among nodes enhances the performance of the estima-

tion task by relaying data throughout the network.

Index Terms— Decentralized processing, multi-task net-

works, learning, adaptive networks, decision-making.

1. INTRODUCTION AND RELATED WORK

Inspired by distinctive biological phenomena, several algo-

rithms are designed to mimic the behavior of animal groups

that move together in an amazing coherence, such as bee

swarms, birds flying in formation, and schools of fish [1–9].

Diffusion strategies can be used to solve estimation tasks in

cooperative networks, which consist of a collection of nodes

with adaptation and learning abilities [10, 11]. In some sit-

uations, the nodes in the network need to decide between

multiple options, for example, to track only one of two food

sources [12]. In the presence of multiple targets another situ-

ation is considered in [13] where the nodes switch the target

they are tracking and form distinct clusters. The resulting

clusters split up while moving and pursue their distinct target

over time.

We consider a distributed mean-square-error estimation

problem over an N -node network. The connectivity of the

nodes is described by a graph (see Figure 1). Data sensed by

any particular node can arise from one of two different mod-

els. The objective is to reach an agreement among all nodes in

the network on one model to estimate and track. Two defini-

tions are introduced: the observed model, which refers to the

one, from which a node collects data, and the desired model,

which refers to the one the node decides to move towards. The

nodes do not know which model generated the data they col-

lect; they also do not know which other nodes in their neigh-

borhood sense data arising from the same model. Therefore,

each node needs to determine the subset of its neighbors that

observes the same model.

The proposed classification scheme in [12], which deter-

mines the subset neighbors that observes the same model,

has some demerits. The performance of this scheme depends

on the initial location of the network and the location of the

models. Since the decision-making objective depends on the

classification output, errors made in the classification process

have an impact on the global decision. Several clustering

algorithms have been proposed in [14–16]. A fast cluster-

ing technique that lets the nodes distinguish the neighbors in

real-time is needed in mobile networks because the topology

changes quickly due to the movement of the nodes. In this

paper, we replace the proposed classification scheme in [12]

by the clustering algorithm in [16] to ensure fast and accu-

rate clustering. Changes in topology over time imply that the

network may be separated into two groups before reaching

the agreement on one model. Now, while groups are moving

far away from each other towards their different desired mod-

els, they will lose the connections between each other. This

means that the decision-making process fails to ensure that

the network converges to only one desired model. We add a

new term to the velocity control, this term helps to keep the

network moving in a cohesive manner, even if nodes move

and do not make a decision yet.

The paper is organized as follows: the network and data

model are described in Section 2. We illustrate the decision-

making algorithm and the motion mechanism technique in

Sections 3 and 4, respectively. Simulation results and dis-

cussion are presented in Section 5.

2. NETWORK AND DATA MODEL

Consider a collection of N nodes distributed in space. Fig-

ure 1 shows the network structure where nodes with the same

color observe the same model. The unknown models are de-

noted by {z◦1 , z
◦
2} each of size M × 1. We denote the set of
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neighbors of node k by Nk,i of size nk,i (i.e, the number of

neighbors of node k). While the set of neighbors of node k ex-

cluding k itself is denoted by N−
k,i. We represent the network

topology at time instant i by means of the N ×N adjacency

matrix Ei whose entries eℓk(i) are defined as follows:

eℓk(i) =

{

1, ℓ ∈ Nk,i

0, otherwise
(1)

We consider an N × N combination matrix Ai where its

(ℓ, k)th entry contains the combination weight aℓk(i) reflects

the weight that node k assigns to data received from node ℓ.
The entries of the combination matrix Ai are non-negative

real-valued, satisfying

aℓk(i) = 0 for ℓ /∈ Nk,i,
N
∑

ℓ=1

aℓk(i) = 1. (2)

Furthermore, we define the nodes observed model vector by
w◦ , col {w◦

1 , w
◦
2 , · · · , w

◦
N}, w◦ ∈ R

MN×1. (3)

Figure 1 shows that node k collects data from model z◦1 , i.e.,

w◦
k = z◦1 , while node ℓ collects data from model z◦2 which

impliesw◦
ℓ = z◦2 . We denote the estimate vector of the desired

model at time instant i of node k by wk,i. We define wi ,

col {w1,i, w2,i, · · · , wN,i}. The objective of the network is

to have all wk,i converge to only one model, either {z◦1} or

{z◦2}. We can write that for each node k ∈ {1, 2, · · · , N}

wk,i → z◦j as i→ ∞ (4)

where j is either 1 or 2. The nodes seek to estimate the vector

parameter z◦j , which leads to the fact that nodes with w◦
k = z◦j

track their own observed model, but others with w◦
k 6= z◦j

do not track their own observed model, but track z◦j instead,

although they do not have any streaming data from z◦j . Then,

the aggregate cost function Jglob(w) is defined as:

Jglob(w) =

N
∑

k=1

||wk,i − z◦j ||
2. (5)

The location and velocity vectors of node k at time instant

i are denoted by xk,i and vk,i, respectively. The modified

diffusion strategy in [12] is given by the following steps:

ψk,i = wk,i−1 + µ(qk,i − wk,i−1) (6)

wk,i =
∑

ℓ∈Nk,i

(ȧℓk(i)ψℓ,i + äℓk(i)wℓ,i−1) (7)

where µ is a positive step-size parameter and qk,i is the noisy

location of the model that node k observes and is given by,

qk,i = w◦
k + ηk,i (8)

where ηk,i is a zero-mean white random process with variance

σ2
k(i) = κ||w◦

k − xk,i||
2, for κ > 0. The combination coef-

ficients ȧℓk(i) and äℓk(i) are two sets of non-negative entries

in the combination matrices Ȧi and Äi which satisfy:

Ȧi + Äi = Ai. (9)

Fig. 1: Illustration of a network model with two observed models repre-

sented by two colors.

The design method of the matrices Ȧi and Äi is illustrated in

Section 3. We define the central location and velocity of the

network at time instant i by averaging location and velocity

of all nodes over the network, respectively, as

x◦i ,
1

N

N
∑

k=1

xk,i, v
◦
i ,

1

N

N
∑

k=1

vk,i. (10)

The central network location x◦i and velocity v◦i are estimated

using the diffusion strategy in a distributed manner by consid-

ering the following global cost functions:

Jx(xg) =

N
∑

k=1

||xgk,i − x◦i ||
2, Jv(vg) =

N
∑

k=1

||vgk,i − v◦i ||
2.

(11)

Applying the diffusion strategy structure to estimate xgk,i and

vgk,i, respectively, we obtain

θk,i = xgk,i−1
+ µ(xk,i − xgk,i−1

) (12)

xgk,i =
∑

ℓ∈Nk,i

aℓk(i)θℓ,i (13)

φk,i = vgk,i−1
+ µ(vk,i − vgk,i−1

) (14)

vgk,i =
∑

ℓ∈Nk,i

aℓk(i)φℓ,i. (15)

Note that we estimate the central network location and veloc-

ity using matrixAi rather than Ȧi or Äi due to the fact that the

nodes are required to share velocity and location information

with all neighbors, regardless of their observed models.

Let the true clustering matrix, which gives information

about the observed model and is not known beforehand, be

denoted by F ◦
i . The assignment of the (ℓ, k)th entry to one

means

f◦
ℓk(i) = 1 ⇒ {ℓ ∈ Nk,i and w◦

k = w◦
ℓ }. (16)

We apply the clustering technique proposed in [16] to create

the estimated clustering matrix Fi of size N ×N . Each node
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k runs the following steps for the clustering process:

ψc
k,i = ψc

k,i−1 + µk(qk,i − ψc
k,i−1) (17)

wc
k,i =

∑

ℓ∈N ′

k,i

a′ℓk(i)ψ
c
ℓ,i (18)

ψc
k,i andwc

k,i both converge to the observed modelw◦
k without

being affected by the decision process. Initializing ψc
k,−1

= 0
and B−1 = S−1 = F−1 = IN , where I denotes the iden-

tity matrix of appropriate size. The combination matrix A′
i is

designed using the following steps [16]:

bℓk(i) =

{

1, if ||ψc
ℓ,i − wc

k,i−1|| ≤ ǫ

0, otherwise
(19)

sℓk(i) = ξ × sℓk(i − 1) + (1− ξ)× bℓk(i) (20)

fℓk(i) = ⌊sℓk(i)⌉ (21)

for ǫ > 0, 0 ≤ ξ ≤ 1, and 0 < ζ ≤ 1. The notation ⌊·⌉
denotes rounding to the nearest integer. The combination co-

efficients a′ℓk(i) satisfy:

a′ℓk(i) = 0, if ℓ /∈ N ′
k,i,

N
∑

ℓ=1

a′ℓk(i) = 1 (22)

where N ′
k,i consists of neighbors believing that they belong

to the same cluster, i.e., fℓk(i) = 1 implies ℓ ∈ N ′
k,i.

3. SELECTION OF COMBINATION MATRICES

Applying the strategy in [12], we use matrixGi of sizeN×N
to estimate the desired model of each node. Node k assigns

the value of the (ℓ, k)th entry for each node ℓ ∈ N−
k,i us-

ing (24). The meaning of the value is as follows:
{

gℓk(i) = 1 : wℓ,i → w◦
k

gℓk(i) = 0 : wℓ,i 6→ w◦
k

(23)

Since node k has access to the desired models of its neigh-

bors gℓℓ(i), it adjusts the desired model of node ℓ from its

perspective gℓk(i) according to the following rule:

gℓk(i) =

{

gℓℓ(i− 1), if fℓk(i) = 1

1− gℓℓ(i− 1), otherwise.
(24)

Each diagonal entry gkk(i) indicates whether node k wishes

to track its own observed model or not,
{

gkk(i) = 1 : wk,i → w◦
k

gkk(i) = 0 : wk,i 6→ w◦
k,

(25)

where node k updates its desired model gkk(i) according to:

gkk(i) =

{

gkk(i − 1), with probability pk(i)

1− gkk(i − 1), with probability 1− pk(i)

(26)

and pk(i) is given by,

pk(i) =
[ng

k(i)]
K

[ng
k(i)]

K + [nk(i)− ng
k(i)]

K
(27)

for a positive constant K , with ng
k(i) being the size of the set

N g
k,i that contains the subset of nodes that are in the neigh-

borhood of node k and have the same desired model as node

k at time instant i− 1. Herein, N g
k,i is constructed as follows:

N g
k,i = {ℓ|ℓ ∈ Nk,i, gℓk(i) = gkk(i− 1)}. (28)

The entries of Ȧi and Äi are set according to the following

rules:

ȧℓk(i) =

{

aℓk(i), if ℓ ∈ Nk,i and fℓk(i) = gkk(i)

0, otherwise
(29)

äℓk(i) =

{

aℓk(i), if ℓ ∈ Nk,i and fℓk(i) 6= gkk(i)

0, otherwise
(30)

As a result, in Eq. (7) node k combines {ψℓ,i} if it wishes to

estimate w◦
ℓ , otherwise it combines {wℓ,i−1} instead, where

ℓ ∈ Nk,i.

4. MOTION MODEL

Every node k updates its location vector according to the rule

xk,i+1 = xk,i +△t · vk,i+1 (31)

where △t is a positive time step and vk,i+1 is the updated

velocity vector of node k. Several factors influence the de-

termination of the velocity vk,i+1 of node k, such as (i) the

desire to move towards the desired model z◦j , (ii) the desire

to move in coordination with other nodes, and (iii) the desire

to avoid collision. The velocity vector vak,i+1
, which allows

node k to move towards the desired model, is given by

vak,i+1 =







wk,i − xk,i , if ||wk,i − xk,i|| ≤ δ

δ ·
wk,i − xk,i

||wk,i − xk,i||
, otherwise,

(32)

where δ is a positive scaling factor used to bound the node

speed. To move in a harmonious manner, the velocity vector

vbk,i+1
of node k is updated as, vbk,i+1

= vgk,i. Nodes should

keep a safe distance r from their neighbors to avoid collision

during the movement. The velocity vector vck,i+1
of node k is

given by

vck,i+1 =
1

nk(i)− 1

∑

ℓ∈N
−

k,i

(1 −
r

||xℓ,i − xk,i||
)(xℓ,i − xk,i).

(33)

Before reaching the agreement on one desired model, the net-

work might become separated into two groups where each

group moves towards its desired model. If these two groups
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move away from each other and lose the connections, the

decision-making process fails. To resolve this issue, we de-

fine an N × 1 vector ιi, each entry ιk(i) is given by,

ιk(i) =

{

1, if pk(i) > 0.5 AND ng
k(i) < nk(i)

0, otherwise.
(34)

The condition in Eq. (34) implies that Nk,i does not agree yet

on one desired model and pk(i) > 0.5 (i.e., node k will keep

its previous decision). If ιk(i) = 1, an additional action has to

be taken by node k, where ιk(i) controls the term vdk,i+1
that

enforces node k to move towards the center of the network in

order to keep the network cohesive. Herein, vdk,i+1
is given

by,

vdk,i+1 =
xgk,i − xk,i

||xgk,i − xk,i||
. (35)

Finally, for the non-negative weighting factors λ and β satis-

fying: λ+ β = 1, each node adjusts its velocity according to

the following rule:

vk,i+1 =
[

1− ιk(i)
]

·
[

λ · vak,i+1 + βvbk,i+1

]

+ ιk(i)v
d
k,i+1 + vck,i+1.

(36)

5. SIMULATION RESULTS AND DISCUSSION

We consider a fully connected network with 40 randomly dis-

tributed nodes. The maximum number of neighbors of node

k is nk,i = 7, as long as they are within radius R = 15.

Nodes observe data originating from two different models:

z◦1 = [−10; 10] and z◦2 = [10; 10]. The assignment of nodes

to the models is random. We use a uniform combination

policy to generate the coefficients aℓk(i) and a′ℓk(i). The

clustering parameters are set as follows: {ǫ, ξ} = {5, 0.6}.

The velocity parameters are set as follows: {λ, β, r,∆t, δ} =
{0.2, 0.8, 3, 0.1, 1} and {µ, κ,K} = {0.05, 0.02, 20}. The

simulation results are obtained by averaging over 1000 inde-

pendent experiments with different setup of the initial net-

work location. Table 1 displays the success rate Rr of the

decision-making to agree on one model, and the average re-

quired time to achieve this agreement Tr. Obviously, the pro-

posed strategy provides better performance with almost 100%

success rate of decision-making in mobile networks while

needing less iterations to achieve this agreement.

Table 1 Decision-making success rate Rr and the average required

time to achieve the agreement Tr .

Tr(sec) Rr(%)
Strategy [12] 72 64.2%

Proposed strategy 58 99.3%

Figure 2 depicts the maneuver of fish schools with

two food sources over time where the nodes agree on the

model z◦1 . The transient network mean-square deviation
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Fig. 2: Maneuver of fish schools with two food sources over time (a) i =

10, (b) i = 30, (c) i = 100, and (d) i = 500. The length unit is the body

length of the node.
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Fig. 3: The transient network mean-square deviation MSD (a). The tran-

sient network mean-square error MSEv (b).

(MSD) at each time instant i is defined by, MSDd(i) ,
1

N

∑N

k=1
||z◦d − wk,i||2, where z◦d is the desired model. By

substituting the undesired model z◦
d̄

in the previous equation,

we obtain the second curve MSDd̄. Figure 3(a) represents

both curves and shows how the network converges to z◦d .

Figure 3(b) shows the transient network mean-square er-

ror of estimating the central velocity v◦i which is given by:

MSEv(i) , 1

N

∑N

k=1
||v◦i − vgk,i||

2. The learning curve

indicates that the network moves coherently.

We studied distributed decision-making over mobile

adaptive networks. We have shown that our proposed clus-

tering technique reduces the error that affects the decision-

making process. We have added a new term to the motion

equation to ensure that the nodes move coherently without

fragmentation. Simulation results show that the proposed

strategy is insensitive to the initial network location and has

high success rate of agreement on one model.
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