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ABSTRACT

In this paper we introduce a novel class of efficient multiotel
adaptive filtering algorithms for sparse FIR systems. Byadly in-
tegrating ideas from compressed sensing and adaptivetfikery,
this class of algorithms allows to significantly reduce tbial num-
ber of adaptive coefficients in an efficient way. These athors,
termed compressive-domain adaptive filters, can be irgggras a
novel type of transform-domain techniques. They can alsselem
as adaptive approach in an efficiently self-learning maaifmsed
on the prior knowledge of sparseness of the system. An irapbrt
property of this concept is that it does not place additioratric-
tions on the input signal characteristics. Based on the-kvedivn
RLS algorithm as a reference, the simulation results cortfiahthe
proposed algorithm converges at acceptable rates, evestrémgly
colored signals such as speech and audio.

Index Terms— Compressive domains, Adaptive filtering, Sys-
tem identification.

1. INTRODUCTION

Linear adaptive filters have found applications in diverse&§ in-
cluding communications, control, robotics, sonar, ragaismics
and biomedical engineering, to name a few [1]. The main els$
tackled problems (inverse modelling, prediction, lineegdiction,
and system identification) share a structure in which a eosttfon
is minimized iteratively. In this paper, we mainly focus dre tsys-
tem identification problem, although the results will alsorg over
to the other classes of problems. Adaptive system idertiicdas
several application areas, such as acoustic echo canmuel{AEC),
layered earth modelling (LEM), propagation channel edtioneand
others [1].

The complexity of the utilised adaptive filter typically deyuls on
the length -dimensions of the target system impulse respovisich
can be excessively high. Nevertheless, in several apjicareas,
such as network AEC, LEM and time domain reflectometry [23, th
system impulse response can be sparse (i.e., only a smedintege
of its coefficients has significant magnitudes) or complgsgimag-
nitudes of the ordered coefficients are fast decaying). isxghper,
we propose a novel multichannel adaptive filtering apprpedttich
achieves a substantial reduction of the computational texitp of
the system identification and improves convergence by tiftdg
leveraging the underlying sparse nature of the sought rsyste
pulse response. Whilst the locations of the significant ar-nero
coefficients of the impulse response are unknevgriori, the intro-
duced method delivers the savings on complexity by transfogy
the adaptation problem into a lower dimensional systenedéent
manifold.
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Fig. 1. Basic multichannel adaptive system identification setup.

1.1. Problem Formulation

We consider the multichannel problem depicted in Figure &t L
P be the number of input channels over which the unknown sys-
tem is excited;xp(n) is the input signal in thep™ channel at the
discrete-time instant,. The sought system impulse response of
the overall lengthN = PL, is denoted byh = [thg,...,hHT
such thathp = [hpﬁo,hpﬂl,...,,hpﬁL_l]T pertains to thep" sub-
system in the multiple-input single-output (MISO) overajistem
model. Subsequently, the outputtatis given byy(n) = x' (n)h
with x(n) = [x] (n),x3 (n), -~ ,x5(N)]T andxp(n) = [Xp(n),Xp(N —
1),....Xp(n—L+ 1)]T. The objective in this paper is to adaptively
estimate the system impulse respomsevhich is assumed to be
sparse/compressible, isupgh)| = ||h||; < K andK <« PL.

1.2. Related Work and Outline

Most of the popular adaptive filtering algorithms are basedhe
least-squares error minimization, where the cost funcisooom-
monly defined by

3 (Rm) = &) :é{(ym)—xT(n)ﬂ(n))z}., W

such thaf {.} is an estimation of the expectation (usually a weighted
sum over time) [1]. The impulse response estimaty & denoted

by ﬁ(n). It comprisesPL MISO coefficient vector composed of the
P subfiltershp(n) = [hp.o(n),hp1(n), - ,hp—1(M]T. Unlike mini-
mizing (1), in this paper we capitalise on the premise thatfstem
impulse responshk (not the input signal) is sparse/compressible to
develop an efficient adaptive filtering technique.
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Several studies consider regularized versions of (1) byrpe 2. COMPRESSIVE DOMAINS FOR SPARSE SYSTEMS
rating known signal priors, perhaps the simplest and mogtifpo
example being the energy-based Tikhonov regularizatign /&1-  Recent studies on compressive sensing state that a sygaak sig.,
other very important class of priors are sparsity-prongmiors,  { can be perfectly reconstructed from its undersampledorers
e.g., [3, 4, 5, 6, 7]. For multichannel adaptive signal pssagy,
structured hybrid norm regularizers have also been showa te@ry h:=®h 2
effective [6]. In general, such approaches (regardlesseoparticu-
lar type of regularization) perform adaptation at each tite@ forall ~ with ® a random observation matrix [15]. The originality of the
the components df(n), including the zero components of the sparsetheory of compressed sensing bases on its implicit statethana
vector. This can lead to a high computational cost and urssecily ~ Subspace spanned by
slow convergence. Conversely, the formulation introducec: ad-
dresses this issue by aiming to adapt only the non-zero cieefts M = O(Klog,(PL/K)) ©)

of the impulse response vector (whose locations are NOtRIOW 6 rrelated white vectors is dense in the spadé-sparse signals
On the other hand, the Compressed Sensing (CS) paradigm egf length PL [16]. This motivates exploring the possibility of for-
ables the concurrent sensing and compression of signaish\ahe  mylating an adaptive filtering solution for sparse systemsam-
sparse in an appropriate transform domain [8, 9, 10]. In GShave  pressive domains with random compression matrices andutitn
y= ¢’\?, wherey € CY are linear measurements of a ta'[/lge'\t‘ VeClorexplicit knowledge about the relevant support of the spayseems.
8eC", [8]p <K andK < N. The sensing matri® € C** % is  gjnce the compression matrix is not given by an explicit eipace
typically dictated by the physical constraints of collegtithe sam-  of the sparse system, we will formulate the adaptive algorivia
ples iny. This matrix has to satisfy certain condition(s), e.g., Re-the reconstruction approach from compressed sensing. Amaip
stricted Isometry Property (RIP), to guarantee the aceueiovery  reconstruction by a transformation matrix can be obtainethfa
of @ from M < N observations via computationally tractable algo- typical compressed sensing cost function which is basecploie
rithms, e.g., convex relaxation and greedy methods [9, IB0§ome  ing the sparsity of the system, given by
previous works, compressed sensing results were dirgupllyeal to )
the sparse channel estimation problem in communicatiotesys /(R s n n
by concatenating the measured system output (i.e. recsigedl) J (h(n)) =A Hh(n)Hl+ Hh(n) 7¢h(n)”z’ @)

f th iti ignal (e.g. i il i in- - -
gtatntes z)s((;tel?i ?(Iﬁr:/?hé?eg :tr[ansO Tﬁ?ﬁffts) ?,t(:; lmh ;r]r;eard whereA denotes the Lagrange-multiplier. A minimum of the cost

X = [x(ng),X(No + 1), ...x(ng + M)| T is anM x N Toeplitz matrix function can be found by setting its gradient whrib zero.

[11, 10, 12]. Hence, the propagation channel(s) impulsgoreseh With

can be estimated by employing one of the CS recovery techsiqu R 8T

However, this is subject t&, which is composed of the exciting HhH1 :sgn{h} h,

signal, satisfying certain conditions such as RIP. Whilstoammu-

nication systems a wide range of signals can be transmitigdgd  hereby, sgfi-} stands for the sign function. Hence, the gradient reads
a training period (e.g. spread spectrum or OFDM signallimgjhe

majority of other applications (e.g. AEC or LEM) guarantegthat Ijﬁ,]’ = asgn{ﬁ(n)} _2" [ﬁ(n) — q:ﬁ(n)] =0,
the input signal meets stringent requirements, such as fhedh-
dition, can be impractical, overly restrictive and costly. i.e., the reconstruction of the coefficient vechois given as the so-

In this paper, we propose a novel compressive-domain agapti |ution of the (nonlinear) system of equations
filtering approach where the compression matrix can be chose
fline, without imposing any constraints on the nature or abiar- )\sgn{ﬁ(n)} +¢T¢ﬁ(n) - ¢TE(n). (5)
istics of ®@. Thus, the utilized compression matdx can be cho-
sen such that it satisfies particular conditions relatecctéopmance
guarantees, e.g., a RIP condition. Most importantly, thisice is
independent of the input signal statistics. We recall thatdbjec-
tive here is to adaptively estimate the system impulse resgio,
rather than recovering a sparse signal vector from its cesged
measurements. Building upon our previous work [13, 14], vile w
also introduce in this paper a computationally efficienbathm ex-  The sign function in (5) can be approximated by
ploiting efficiently the lower dimensional manifold of thiiially = N R
unknown) sparse system, i.e., we compress the system ienpeds sgn{h} =Eth, with E:= diag{‘h) +8}~, (6)
sponse to reduce its dimensionality based on the sparsdy pn
[14] it was demonstrated that this class of algorithms caleéd be ~ Wheree is a parameter that prevents a division by zero. By substitut

3. COMPRESSIVE-DOMAIN ADAPTIVE FILTERING AS
SELF-LEARNING TRANSFORM-DOMAIN ADAPTIVE
FILTERING

considered as an adaptive manifold learning algorithmetvkimul-  ing this approximation into (5), we obtain
taneously identifies the sparse system and the corresmpluiier- 1
dimensional manifold. Additionally, the algorithm intracked below h(n) = ()\Efl(n) + ¢T¢> o'h. %)

can be interpreted as a novel transform-domain adaptieitig in
which the transformation is learned from the data. Due tathes| Hence, we can now write the reconstruction process by apliaki

efficient formulation of this type of manifold learning/@ery algo-  tjon of h with a reconstruction matrix that we define as
rithm here, the resulting realization has a substantiailyel compu-

tational complexity compared with other benchmark adaptizch- o (n) = <)\E*1(n) +¢T¢> 71¢T @®
niques. ' '
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Sinceh is a priori unknown, an iterative computation for the regu-

larization matrixE 1 is performed, i.e.,

E(n) = diag{)ﬁ(n—l)‘ +e}, ©)

whereE(0) is set to the unity matrix. Thereby, the reconstruction

matrix can be understood as an adaptive backtransformitidrix

gence rate compared to the linear convergence rate of thggta
based algorithms [1].

4. EXACT REDUCED-COMPLEXITY ALGORITHM FOR
COMPRESSIVE-DOMAIN ADAPTIVE FILTERING

Using the matrix inversion lemma in the form

from the domain where the system has a compressed dense repre

sentation to the domain where it is sparsely representeid. bEtk-
transformation matrix is adaptively adjusted to the spataécture
of the system.

Having defined the reconstruction matdx" (n) according to

(8), i.e.,ﬁ(n) = ¢+(n)ﬁ(n), we can now express the (uncompressed)

output signal of the adaptive filter as follows:
() = BT (np(n) = [ ()] x(m) =R ()T (ryx(n)

By introducing the transformed input vector

x(n) == T ()x(n), (10)
we can finally express the output sigiyah) as
9(n) =h' (n)x(n). (11)

The actual adaptive filter optimization can then be expdipse-
formed completely in the corresponding transform domaie. dah
write the original cost function (1) of the adaptive filteaglently
as

3(Am) = E{ v —9m)?}, (12)
with the new definitiony(n) = ET(n)g(n). Note, however, that in
each adaptation step, the reconstruction matvixn) depends on
the previous coefficient vectdr(n) via E(n). In other words, the
optimization is performed in each stegor a given®™ (n) in a lo-
cal Euclidean space. This mechanism is precisely in liné e
manifold learning framework [17], as illustrated in [14].

The least-squares solution in the compressed domainnitee
local Euclidean space, is given as

hopd(M) = Ryt (Mryy(n).

Typically, the correlation matrix is estimated iterativelsing the
formula

(13)

Ru(N) = o Ryx(n— 1) +x(n)x (n), (14

wherea denotes a forgetting factor. This leads to the well-known re

cursive least-squares (RLS) algorithm [1], applied hetdélower-
dimensional compressed domain. The uncompressed eddifiiate
coefficient vector at stepis then given by

h(n) = @™ (mh(n). (15)

It should be mentioned that instead of the RLS algorithm, ae ¢
essentially apply any adaptive filtering algorithm in thenpoessive

domain. This is due to the fact that througim) = ET(n)g(n) the

-1 -1
(A + BBT) —Al_alB (l + BTA’lB> BTA L, (16)
we can reformulate (8) as

-1
%EQJT _ Lot (I + E<1>E<1>T> Q%EQT. a7

+_
e = A A

Note that instead of the inversion ofRL x PL matrix in (8), this
equation only requires an inversion dfa K matrix, whereK < PL
in sparse systems. By introducing the two intermediate tifies

D:= %E¢T:%diag{|ﬁ(n—l)}+s}¢T (18)
and
C:=®D, (19)
we obtain
ot =D-D(1+C)"LC. (20)

The resulting algorithm for adaptive system identificatiorcom-
pressive domains is summarized in Table 1. Figure 2 illtestrthis
scheme. In the next section, it is demonstrated that theogemp
class of algorithms can significantly reduce the complegityhe
coefficient estimation compared with other benchmark tephes,
namely the RLS.

X1

Xp

Fig. 2. Multichannel adaptive system identification in compressi
domain.

5. EXPERIMENTS

As a proof of concept for the novel compressive domain adapti
filtering method we simulate a 2-channel MISO system ideatifi
tion scenario. Here a notably sparse system environmensiwas
lated by onlyK = 8 randomly weighted pulses, i.e., 4 pulses in each
channel, and the overall filter length was set.te- 1000 for each
channel. The pulses were randomly distributed over theeefiltier

cost functionJ can always be expressed exclusively by the com-engthL. The channels were excited by an audio signal at a sampling

pressed parameter vec@@n). In general, the zeros @fj;J can be
determined iteratively with the Newton algorithm. The madvan-
tage of Newton-type adaptation algorithms is its quadreticver-
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rate 44.1kHz (as an example for colored system excitatifai-
tive white noise was added to the captured signal to obtaiBNR
of 60dB iny(n).



Table 1: Novel Compressive-Domain Adaptive Filter Algorithm

Initialization:
h = 0
® = randn(M,PL), whereM < PL
Reconstruction matrix and input compression:
1T _
D) = X.tb A forn=0
diag{|h(n—1)| +&}D(0) forn=12...
C(n) = ®D(n)
®*(n) = D(n)-D(m(I+C(m) *c(n)
x(n) o+ T(n)x(n)

Any adaptive filtering algorithm (e.g., RLS)
(in the compressed-input domain i.e., hx, y, €):

en) = yn-h'(n—1)x(n)
Ru(M) = aRy(n—1)+x(Mx"(n)
h(n) = Bn—1)+Re(nx(n)e(n)

Reconstruction of sparse coefficient vector:

hn) = ®*(h(n)

Figure 3 shows a comparison between coefficient misalighmen

convergence curves, i.e., the normalizechorm of the coefficient
error in dB. As a reference, the blue (dashed) curve showpdhe
formance achieved by the original two-channel RLS algarithith

L = 1000 coefficients for each channel (i.e., non-compressiep-a
tation). The green (solid) curve shows the convergenceeéttap-
tation of the RLS algorithm in the compressed domain acogrdi
to Table 1. In contrast to the noncompressed case, the nuofiber
adaptive filter parameters was reduced significantly fRim= 2000

= compressed RLS, L=1000, M=50 (i.e., 25 parameters per channel)
= = = original RLS, L=1000
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Fig. 3. Comparison of identification performance for the proposed
algorithm and the RLS method.

tained (or in some cases even be improved due to the reduced nu
ber of coefficients to be learned). The presented simulateunlts
show that the concept of compressive domain adaptive fijes
efficiently realizable and at acceptable convergence maten for
colored signals such as speech and audio.
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