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ABSTRACT

We present a novel Rao-Blackwellized multiple particle filtering
method for inference of correlated latent states observed via non-
linear functions. We adopt a state-space framework and model the
dynamic correlated states using a mixing matrix, embedded in white
Gaussian noise. The critical challenges in practice are the lack
of knowledge about the mixing parameters and the possibly large
dimensionality of the state. We address these issues by implement-
ing Rao-Blackwellization of the unknown parameters and adopting
a divide-and-conquer approach. The former strategy amounts to
marginalizing out some of the variables; the latter breaks the space
of the system in subsystems, and runs a separate particle filter for
each of them. The resulting Rao-Blackwellized multiple particle
filtering accurately estimates the correlated latent states, as shown
by the provided simulation results.

Index Terms— Multiple particle filtering, correlated states,
mixing matrix, Rao-Blackwellization, unknown parameters.

1. INTRODUCTION

Studying time-varying data is critical in various fields of science and
engineering [1]. To that end, state-space modeling [2] and Bayesian
dynamic models [3] are well-established techniques for analysis and
prediction of time-series. Examples include neurology [4], urban
planning [5], engineering [6] or finance [7]. The state time-series are
often multivariate, and they show non-negligible correlation and are
not directly observed. Moreover, for the study of correlated states
one uses linearly mixing parameters, which result in multivariate
Gaussian processes. In the most common setting, the state-space
model is assumed to be linear, the noises in the state and observation
equations are Gaussian, and the matrices and parameters that appear
in these equations are known. In that case, the optimal solution for
estimation of the dynamic state is the Kalman filter [8].

In this paper, we do not restrict ourselves to any of these assump-
tions, as we focus on more general practical settings. On the one
hand, we work with Gaussian correlated multivariate states, where
the static mixing parameters of the model are not known. On the
other, we do not limit ourselves to linear observations. To overcome
these challenges and resolve the parameter estimation problem, one
needs to resort to suboptimal algorithms and, in this paper, we adopt
the sequential Monte Carlo (SMC) or Particle Filtering (PF) method
[9, 10]. These methods have been widely applied [11, 12] since the
seminal publication of [13], but are known to suffer when dealing
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with static parameters and high-dimensional states. We address these
challenges by applying Rao-Blackwellization [14] and by adopting
the principles of Multiple Particle Filtering (MPF) [15].

In this paper, we focus on combining Rao-Blackwellization with
MPF for inference in the presence of state correlation with unknown
mixing parameters. By marginalizing out the unknown static param-
eters, we avoid generating particles for them and, thus, we improve
the estimation accuracy of the method. With MPF, we focus on a set
of marginal densities to mitigate the impact of increasing the state di-
mensionality. The contribution of this paper is on the efficient com-
bination of both techniques for inference of correlated states with
unknown parameters observed via nonlinear functions.

The next section introduces the problem of interest and moti-
vates the need of the PF framework, which is briefly described in
Section 3. The drawbacks related to systems with correlated states
of unknown mixing parameters are addressed in Section 4, where the
new method is proposed. Section 5 presents numerical results and
Section 6 provides closing remarks.

2. PROBLEM FORMULATION

We consider state-space models described by a set of hidden pro-
cesses correlated via an unknown mixing matrix and embedded in
white Gaussian noise. These latent states are observed through a set
of nonlinear measurements.

Mathematically, let xt ∈ Rdx be the set of latent correlated pro-
cesses and yt ∈ Rdy the data observed at time t defined by a nonlin-
ear equation, i.e.,

xt = Axt−1 + ut, state equation, (1)
yt = h(xt, vt), observation equation, (2)

where t = 1, 2, · · · ; ut ∈ Rdx is a zero mean Gaussian vector
with covariance matrix Cu; A ∈ Rdx×dx is a mixing matrix; vt ∈
Rdv denotes an independent noise process; and h(xt, vt) : Rdx ×
Rdv → Rdy , is some generic function. We do not restrict the form
of h(·, ·), and thus allow for data observed via nonlinear functions of
the state. The only requirement is that the likelihood, i.e., f(yt|xt),
is computable up to a proportionality constant.

Given a set of observations y1:t ≡ {y1, y2, · · · , yt}, the goal
is to sequentially infer the evolution of the correlated states, xt, by
estimating the posterior distribution, i.e., f(xt|y1:t). We do so by
updating f(xt|y1:t) to f(xt+1|y1:t+1), by using each new observa-
tion yt+1. The new density is derived by employing the Bayes’ rule

f(xt+1|y1:t+1) ∝ f(yt+1|xt+1)

∫
f(xt+1|xt)f(xt|y1:t)dxt.

(3)

3849978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



The analytical solution to (3) is attainable in rare cases, e.g.,
when dealing with Gaussian noises and linear functions, which is
the celebrated Kalman filter [8]. Since we do not restrict ourselves
to such assumptions, we resort to PF methods, which can overcome
these additional challenges.

3. STANDARD PARTICLE FILTERING

PF methods approximate the densities of interest by discrete random
measures, i.e.,

f(xt) ≈ fM (xt) =

M∑
m=1

w
(m)
t δ(xt − x(m)

t ), (4)

where x(m)
t are samples (i.e., particles) drawn from a proposal dis-

tribution andw(m)
t are the weights associated to them, which sum up

to one. The total number of particles that form the random measure
is denoted by M .

With PF, the discrete random measure is recursively updated
upon arrival of a new observation. The update consists of generation
(sampling) of new particles and computation of their corresponding
weights. A final step, known as resampling, is implemented to avoid
particle attrition due to the sequential updates over time.

The key for a successful PF method is to propagate particles
in regions of the state’s space where most of the information is
located. The two most common proposal functions are the tran-
sition density f(xt+1|x1:t) and the optimal importance function
f(xt+1|x1:t, y1:t+1). The latter minimizes the variance of the re-
sulting weights, conditioned on the available information, but it is
often intractable in many problems of interest (as is the case here).
Drawing samples from the transition density is easier and leads to
particle weight updates given by w(m)

t+1 ∝ w
(m)
t f(yt+1|xt+1). For

the model in (1)-(2), the transition density of the states, when the
mixing parameters are known, can be readily derived.

However, there are two main challenges to address in practical
situations. On the one hand, it is unrealistic to assume knowledge of
the mixing parameters and, on the other, the method suffers as the
dimensionality of the state increases. Both problems are critical for
PF methods, as the estimation of static parameters is troublesome
[16, 17] and the curse of dimensionality undermines their applica-
bility [18, 19].

Here, we deal with these challenges using a two-pronged ap-
proach. First, we exploit Rao-Blackwellization [14] to integrate
out the static parameters and avoid generating particles for them.
This statistical procedure guarantees reduced estimation variance
and thus, allows for improved estimation of the state process. The
technique has already been successfully applied in conjunction to
SMC methods [20, 21, 22]. For further mitigation of the impact of
increasing state dimensionality, we build upon the MPF approach
[23, 15, 24], where one breaks the high-dimensional distribution of
the complete state into smaller dimensional marginal ones.

The novelty of this paper is on the efficient combination of Rao-
Blackwellization with MPF methods for inference of correlated la-
tent states with unknown mixing parameters.

4. THE PROPOSED METHOD

We first derive the Rao-Blackwellized density for the problem of in-
terest and then elaborate on the details of the proposed MPF method.

For the model in (1)-(2), given knowledge of the mixing param-
eters A and Cu, and previous states xt, the transition density is a

multivariate Gaussian

f(xt+1|xt, A, Cu) = N (xt+1|Axt, Cu). (5)

In practice, it is unrealistic to assume that the true values of the
mixing parameters are known and thus, we marginalize them out.
Let us define the following historical data matrices{

Xt = [x1x2 · · ·xt] ∈ Rdx×t,
Zt = [x0x1 · · ·xt−1] ∈ Rdx×t.

(6)

It can be seen that the estimate of the mixing matrix at time t is Ât =
XtZ

>
t (ZtZ

>
t )−1 [25]. Instead of resorting to point estimates, we

adopt Rao-Blackwellization. That is, we integrate out the unknown
mixing parameters A and Cu to derive the transition density.

To that end, we proceed as in [26] and obtain the density of xt+1,
given the past data x1:t, as a multivariate t-distribution

f(xt+1|x1:t) = Tνt+1 (xt+1|µt+1, Rt+1) , (7)

where νt+1 denotes degrees of freedom, µt+1 ∈ Rdx is the location
parameter, and Rt+1 ∈ Rdx×dx represents the scale matrix [27].
These distribution parameters are computed by

νt+1 = t− dx − dx + 1,

µt+1 = Âtzt+1,

Rt+1 =
(Xt−ÂtZt)(Xt−ÂtZt)

>

νt+1(1−x>t (Zt+1Z
>
t+1)

−1xt)
.

(8)

This transition density (which does not depend on the mixing
parameters A and Cu) allows for implementation of a standard PF
method for inference of correlated processes when the mixing pa-
rameters are unknown.

In order to apply the previous scheme to systems of higher di-
mensions, we are interested on an MPF-type solution. In MPF, one
decomposes the space of the latent state into subspaces and assigns
a particle filter to each of them. Consequently, instead of obtaining
the full joint filtering density, one focuses on a set of marginal filter-
ing densities of a lower dimensional subspaces. Mathematically, the
space of the state xt ∈ Rdx is partitioned into N disjoint subspaces
xn,t ∈ Rdxn , n = 1, 2, · · · , N , where

∏N
n=1 R

dxn = Rdx . For
each of the subpaces xn,t, a separate PF is run to sequentially obtain
f(xn,t+1|xt, yt+1).

However, the correlation between states as in (1)-(2) is a hur-
dle for the MPF, as the propagation and weighting steps of each PF
depend on all the other states. To overcome such difficulties, one
can share information across the individual PFs [24]. We note that,
the approach in [24] relies on knowledge of the mixing parameters,
which is not the case here. Therefore, the critical issue is how to
combine the random measure of each PF with the information shared
by other PFs when the mixing parameters A and Cu are unknown.
We overcome these challenges by leveraging the Rao-Blackwellized
density in (7) within a MPF method.

Let us denote each subspace vector as xn,t ∈ Rdxn and the
overall state information as zt =

(
x1,t x2,t · · · xN,t

)> ∈ Rdx ,
and define {

Xn,t = [xn,1 xn,2 · · · xn,t] ∈ Rdxn×t,

Zt = [x0 x1 · · · xt−1] ∈ Rdx×t.
(9)
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For each subspace, the transition density when no knowledge of the
mixing parameters is assumed, is given by

f(xn,t+1|x1:t) = Tνn,t+1 (xn,t+1|µn,t+1, Rn,t+1) ,

with


νn,t+1 = t− dxn − dx + 1,

Ân,t = Xn,tZ
>
t (ZtZ

>
t )−1

µn,t+1 = Ân,tzt+1,

Rn,t+1 =
(Xn,t−Ân,tZt)(Xn,t−Ân,tZt)

>

νn,t+1(1−z>t+1(Zt+1Z
>
t+1)

−1zt+1)
.

(10)

The above density illustrates how, for each subspace xn,t, the
local information Xn,t is fused with the overall knowledge via zt+1

and Zt.
Within MPF methods, several alternatives can be considered on

how to share information across PFs. In this paper, we simply re-
sort to the state estimates provided by each PF, i.e., zt = x̂t =(
x̂1,t x̂2,t · · · x̂N,t

)>. Sharing these estimates provides relevant in-
formation while incurring minimal communication cost.

In summary, at time instant t, the Rao-Blackwellized MPF
method for inference of correlated states with unknown mixing
matrices considers a random measure fM (xn,t) per subspace xn,t

fM (xn,t) =

M∑
m=1

w
(m)
t δ

(
xn,t − x(m)

n,t

)
, n = 1, · · · , N,

and all state estimates up to time instant t, included in Zt and zt+1.
Upon the reception of a new observation, at time instant t + 1, the
algorithm proceeds as follows:

1. Propagate the particles for each subspace by sampling from
the transition density

xn,t+1 ∼ f(xn,t+1|x(m)
1:t ) = Tνn,t+1

(
xn,t+1|µ(m)

n,t+1, R
(m)
n,t+1

)
,

with



νn,t+1 = t− dxn − dx + 1,

Â
(m)
n,t = X

(m)
n,t Z

>
t (ZtZ

>
t )−1,

µ
(m)
n,t+1 = Â

(m)
n,t zt+1,

R
(m)
n,t+1 =

(
X

(m)
n,t −Â

(m)
n,t Zt

)(
X

(m)
n,t −Â

(m)
n,t Zt

)>
νn,t+1(1−z>t+1(Zt+1Z

>
t+1)

−1zt+1)
.

Note that the sufficient statistics depend on each previous
stream of (resampled) particles x(m)

n,t .

2. Compute the non-normalized weights for the drawn particles
according to

w̃
(m)
n,t+1 ∝ f(yt+1|x(m)

n,t+1),

and normalize them to obtain a new random measure per sub-
space

fM (xn,t+1) =

M∑
m=1

w
(m)
n,t+1δ

(
xn,t+1 − x(m)

n,t+1

)
.

3. Compute the state estimates zt =
(
x̂1,t x̂2,t · · · x̂N,t

)>,
from each subspace random measure

x̂n,t =
M∑
m=1

x
(m)
n,t+1w

(m)
n,t+1. (11)

This information is shared amongst all N PFs for subsequent
time instants.

4. Perform resampling of each state subspace (to avoid sample
degeneracy) by drawing from a categorical distribution de-
fined by the random measure

x
(m)
n,t ∼ f

M (xn,t), where m = 1, · · · ,M.

We note that this step does not have to be performed at every
time instant.

5. SIMULATION RESULTS

We evaluate the proposed method by simulating an illustrative
practical scenario, where a set of observed time-series are driven
by several latent correlated processes. Specifically, we model a
6-dimensional state process (dx = 6) with standard multivariate
Gaussian independent and identically distributed innovations ut,
i.e.,

xt = Axt−1 + ut, x1,t
x2,t
x3,t
x4,t
x5,t
x6,t

 =

 0.7 0.12 0.08 0 0 0
0 0.7 0.12 0.08 0 0

0.15 0 0.7 0.12 0.08 0
0 0.15 0 0.70 0.12 0.08
0 0 0.15 0 0.70 0.12
0 0 0 0.15 0 0.7



x1,t−1
x2,t−1
x3,t−1
x4,t−1
x5,t−1
x6,t−1

+ ut.

(12)

The latent process xt drives the mean and volatility of three observed
time-series (dy = 3)

y1,t = x1,t + ex2,t/2v1,t,

y2,t = x3,t + ex4,t/2v2,t,

y3,t = x5,t + ex6,t/2v3,t,

(13)

where v1,t, v2,t and v3,t are independent standard Gaussian noises.
A practical motivation for this problem setup can be found in

finance, where each observation describes the price evolution of an
asset, whose dynamics are captured by a trend and a log-volatility
[28]. Each mean and log-volatility process not only follows its own
dynamics, but is also correlated via the mixing matrixA. In practice,
how the properties of the assets are correlated amongst each other is
hard to know beforehand and thus, the relevance of this problem for
the evaluation of the proposed method.

We simulated the above system and implemented the proposed
method. We divided the state into subspaces, each with a mean and
log-volatility pair associated with a particular asset. This results in
N = 3 PFs: yn,t with x2n−1,t and x2n for n = 1, 2, 3, each with
M = 1, 000 particles.

We show in Fig. 1 the estimation performance of the method
described in Section 4. We observe that the Rao-Blackwellized MPF
is able to successfully track the latent state. Note how the estimation
is more accurate for the mean states (x1,t, x3,t and x5,t) than the
log-volatility processes (x2,t, x4,t and x6,t).

We point out that the accuracy of the method improves as time
evolves (see estimates after t = 100 in Fig. 1). The reasoning be-
hind this is that, with time, we observe more data and thus, both the
state estimates, and the computed sufficient statistics in (10) become
more precise. That is, the more data that are observed, the better the
state estimates are, and consequently, the more precise the posterior
parameters become (which in turn improves the state estimation via
more accurate sufficient statistics).

This improvement on the sufficient statistics is plotted, for some
components of the mixing matrix A, in Fig. 2. There, we show how
the mean estimates improve over time and become quite accurate
after an unstable initial period.
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Fig. 1: True state process (in black) and estimated (in red).
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Fig. 2: Parameter true value (in black) and estimated (in red).

We further evaluated the proposed Rao-Blackwellized MPF
method and compared it to other state-of-the-art PF methods. In
Table 1 we provide the state estimation mean squared error (MSE)
averaged over 50 realizations of 100-long time-series. There, we
compare the performance of the proposed method to the standard PF
(SPF) algorithm and the MPF method, when the mixing parameters
are known (which serve as benchmarks of the proposed method).

State estimation error (MSE)
SPF, known A, Cu MPF, known A, Cu MPF, unknown A, Cu

x1 0.717278492 0.695521012 1.44317724
x2 1.71300497 1.58838685 4.07465372
x3 0.730489575 0.727382485 1.49508191
x4 1.97312377 1.85175375 5.56804227
x5 0.801862576 0.775937176 1.4138755
x6 1.86307229 1.70220069 4.62055982

Table 1: MSE performance of different PF alternatives.

It is apparent that the MPF method provides estimates that are
more accurate than the SPF approach for the known parameter case.
When dealing with unknown mixing parameters, as expected, the
estimation accuracy deteriorates. However, due to the implemented
Rao-Blackellization procedure, the proposed method is still able to
track the latent correlated states. We emphasize that in practical sce-
narios there will be no knowledge of the mixing parameters, but the
proposed method is still able to track the latent states accurately.

6. CONCLUSIONS

In this paper, a new Rao-Blackwellized multiple particle filter-
ing scheme is proposed for systems with hidden states correlated
through unknown mixing parameters. The proposed solution relies
on the multiple particle filtering concept, where each of the filter
works on a subspace of the overall state. In addition, the mixing
parameters are marginalized per subspace, and therefore, constitute
a reduced burden in the performance. Computer simulations reveal
a good estimation accuracy and reduced computational complexity
of the proposed method.
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