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ABSTRACT

This contribution focuses, within the `1-Potts model, on the au-
tomated estimation of the regularization parameter balancing the
`1 data fidelity term and the TV`0 penalization. Variational ap-
proaches based on total variation gained considerable interest to
solve piecewise constant denoising problems thanks to their deter-
ministic setting and low computational cost. However, the quality
of the achieved solution strongly depends on the tuning of the reg-
ularization parameter. While recent works have tailored various
hierarchical Bayesian procedures to additionally estimate the reg-
ularization parameter for Gaussian noise, less attention has been
granted to Laplacian noise, of interested in numerous applications.
This contribution promotes a fast and parameter-free denoising pro-
cedure for piecewise constant signals corrupted by Laplacian noise,
that includes automated selection of the regularization parameter. It
relies on the minimization of a Bayesian-driven criterion whose sim-
ilarities with the `1-Potts model permit to derive a computationally
efficient algorithm.

Index Terms— Piecewise constant denoising, Laplacian noise,
regularization parameter automated selection, Potts model, hierar-
chical Bayesian model.

1. INTRODUCTION

Denoising piecewise constant signals is of considerable interest in
various applications [1, 2]. A large part of the literature relies on the
assumption that noise is white and Gaussian. However, in numer-
ous applications, it is advisable to assume a Laplace distribution for
the noise rather than a Gaussian, in particular to account for large
excursions of the noise, potentially corresponding to outliers [3, 4].

The problem of denoising piecewise constant signals corrupted
by Laplace noise can be traced back to [5, 6]. Since then, it has
rarely been envisaged in the Bayesian literature because, as opposed
to Gaussian noise, posterior distributions cannot be, in general, rep-
resented in terms of simple and tractable functions of the observa-
tions. However, various methods have been developed to general-
ize the likelihood ratio test approach (see, e.g., [4] and references
therein). In the variational setting, there exists a formulation based
on the following `1-TV`0 problem (usually referred to as `1-Potts
model; here `1 indicates the norm of the data fidelity term) [7, 8]

x̂λ ∈ Argmin
x∈RN

‖y − x‖1 + λ‖Lx‖0, (1)

where y ∈ RN denotes the linear superposition of data and noise,
L ∈ R(N−1)×N is the first difference operator, i.e., (Lx)k =
xk+1 − xk, and λ ≥ 0 is a regularization parameter aiming to

balance the data fidelity and regularization terms. While (1) can be
solved by means of, e.g., dynamic programming [7, 8], the estima-
tion performance of x̂λ strongly depends on the choice of λ, which
is a priori unknown.
Related works. In the context of Gaussian noise and, thus, of the
`2-TV`q counterpart of (1) with q = {0, 1}, interesting ideas to se-
lect λ rely on a hierarchical Bayesian structure between y, x and
λ. For instance the selection of λ in the `2-TV`1 problem can be
solved by assuming a certain prior for λ and maximizing either the
conditional distribution of (x, λ) given y [9, 10] or a marginalised
posterior in order to remove λ from the model [10,11]. In the context
of `2-TV`0 (also known as the `2-Potts model), a taylored procedure
relying on a reparametrization of x has been derived in [12] and its
performance have been assessed and validated numerically. All these
approaches share the common idea that the problem amounts in con-
sidering a joint estimation of x and λ, thus requiring an additional
penalization term, precluding the trivial choice λ = 0, and often
designed from hierarchical Bayesian arguments.
Contributions and outline. Departing from [12], which is tay-
lored to Gaussian noise (i.e., the `2-Potts model), this paper derives
a parameter-free estimation procedure suited to Laplacian piecewise
contant denoising. It consists in solving

(x̂, σ̂, λ̂) ∈ Argmin
x∈RN ,σ≥0,λ≥0

1

σ
‖y − x‖1 +

λ

σ
‖Lx‖0 + φ(σ, λ) (2)

after having carefully designed φ beforehand. To that end, this work
relies on the following original key ingredients. First, a suitable
reparametrization of x is proposed in Section 2. Then, the penalty
φ is derived based on hierarchical Bayesian arguments described in
Section 3. Moreover, we design in Section 4 an algorithmic proce-
dure providing an approximate solution for (2) which benefits from
numerically efficient dynamic programming techniques solving (1).
Estimation performance are assessed in Section 5 and demonstrate
that the proposed procedure provides estimates of the regularization
parameter of the `1-TV`0 problem that lead to performance close to
that of the oracle estimator, at competitive computational cost. Sec-
tion 6 concludes on this contribution.

2. PROBLEM FORMULATION

2.1. Problem statement

The underlying problem consists in estimating a piecewise constant
signal x ∈ RN from the noisy observations y = x + ε. The noise
samples (εi)1≤i≤N are assumed to be independent and identically
distributed (i.i.d.) zero mean Laplace variables with common but
unknown scale parameter σ, i.e., ε|σ ∼ Laplace (0, σIN ).
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2.2. Problem parametrization

Following [13,14], any candidate solution x can be parametrized by
the indicator vector r ∈ {0, 1}N of its change-points and the vector
of values, µ = (µk)1≤k≤K , taken between each change-point. The
indicator vector r =

(
ri
)

1≤i≤N is introduced as follows

ri =

{
1, if there is a change-point at time instant i,
0, otherwise. (3)

By convention, ri = 1 indicates that xi is the last sample belong-
ing to the current segment, and thus that xi+1 belongs to the next
segment. Moreover, setting rN = 1 ensures that K =

∑N
i=1 ri.

For each k ∈ {1, . . . ,K}, the set Rk ⊂ {1, . . . , N} repre-
sents the set of time indices associated to the k-th segment. There-
fore, Rk ∩ Rk′ = {∅} for k 6= k′ and ∪Kk=1Rk = {1, · · · , N}.
Hereafter, the notation Kr will be adopted to emphasize the depen-
dence of the number K of segments on the indicator vector r, i.e.,
K = ‖r‖0.

The values taken on each segment of x can be encoded by intro-
ducing the vector µ = (µk)1≤k≤Kr such that

(∀k ∈ {1, . . . ,Kr})(∀i ∈ Rk) xi = µk. (4)

This parametrization leads to a first result whose derivation
comes from straightforward yet tedious calculations not reported
here for brevity, see also [12].

Proposition 2.1. Let y ∈ RN and φ : R+ ×R+ → R. Problem (2)
is equivalent to

minimize
{r,µ}∈{0,1}N×RKr

λ≥0,σ≥0

{
1

σ

Kr∑
k=1

∑
i∈Rk

|yi − µk|

+
λ

σ
(Kr − 1) + φ(σ, λ)

}
. (5)

3. BAYESIAN DRIVEN DERIVATION OF φ

It is well established that a minimization problem balancing data
versus regularization terms can be related to the maximization of a
posterior distribution (see e.g., [15]). A similar idea is used here, for
a posterior distribution that is obtained with a hierarchical Bayesian
formulation in order to derive a connection with (5).

3.1. Hierarchical Bayesian model

First, the joint likelihood function for y given the piecewise constant
model {r,µ}, the noise model and the scale parameter σ follows a
Laplace distribution, i.e.,

fL (y|r,µ, σ)=

Kr∏
k=1

∏
i∈Rk

1

σ
exp

(
− |µk − yi|

σ

)
. (6)

To derive the posterior distribution, prior distributions over r, µ, and
σ have to be specified. In the literature, it is often encountered to
assume that (ri)1≤i≤N are independent and identically distributed
(i.i.d.) according to a Bernoulli distribution with hyper-parameter
p [16–18]. The parameter p quantifies the prior probability of occur-
rence of a change, independently of the location:

fB(r|p) =

N−1∏
i=1

pri(1− p)1−ri . (7)

From a hierarchical Bayesian perspective, a natural choice for
the posterior distribution of segment amplitudes (µk)1≤k≤Kr would
consist in electing independent conjugate Laplace prior distributions.
However, such posterior distributions cannot be made explicit as
simple tractable functions. To alleviate this problem, we choose a
non-informative prior such as a uniform distribution on a fixed inter-
val [µ−, µ+], i.e.,

fU (µ|r) =

Kr∏
k=1

(µ+ − µ−)−1ı[µ−,µ+](µk), (8)

where ıA is the indicator function of the set A. In particular, if we
choose µ− < min(y) and µ+ > max(y), then (8) recasts into

fU (µ|r) =
(
µ+ − µ−

)−Kr
ı[µ−,µ+]Kr (µ). (9)

Following usual prior choices in hierarchical approaches [14], a
scale-invariant non-informative Jeffreys prior is assigned to the scale
parameter σ in order to account for the absence of prior knowledge
on σ, i.e.,

fJ (σ) ∝ 1

σ
, (10)

while a conjugate Beta distribution with fixed parameters α0 and α1

is assigned to the unknown hyper-parameter p

fβ(p) =
Γ (α0 + α1)

Γ (α0) Γ (α1)
pα1−1(1− p)α0−1. (11)

Assuming that the parameters r, µ and σ are a priori indepen-
dent, the joint posterior distribution can be derived as

f(Θ|y) ∝ fL (y|r,µ, σ) fU (µ|r) fB(r|p)fJ (σ) fβ(p) (12)

with Θ = {r,µ, σ, p} ∈ Q = {0, 1}N×RKr×R+×[0, 1]. Finally,
the maximum a posteriori (MAP) estimator can be computed by min-
imizing the negative log-posterior distribution (12), which leads to
the problem

minimize
Θ={r,µ,σ2,p}∈Q

1

σ

Kr∑
k=1

∑
i∈Rk

|yi − µk|

+ (Kr − 1)

(
log

(
1− p
p

)
+ log(µ+ − µ−)

)
+N log(2σ)− (N − 1) log(1− p) + log σ

− (α1 − 1) log p− (α0 − 1) log(1− p)
+ log(µ+ − µ−). (13)

3.2. Problem equivalence and derivation of φ

The core idea to derive φ consists in drawing an equivalence between
problems (5) and (13).

Proposition 3.1. The minimization problems (5) and (13) lead to a
similar solution with the following parametrization of λ

λ

σ
=

(
log

(
1− p
p

)
+ log(µ+ − µ−)

)
(14)

and choice of φ

φ(σ, λ) = N log(2σ) + log(σ) (15)

− λ

σ
(N + α0 − 2) + (N + α0 − 1) log(µ+ − µ−)

+ (N + α0 + α1 − 3) log

(
1 + exp

(
λ

σ
− log(µ+ − µ−)

))
.
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Algorithm 1 Bayesian driven resolution of the `1-TV`0 problem

Input: Observed signal y ∈ RN .
The predefined set of regularization parameters Λ.
Hyperparameters Φ =

{
α0, α1, µ

+ − µ−
}

.
Iterations:

1: for λ ∈ Λ do
2: Compute x̂λ = arg min

x∈RN
‖y − x‖1 + λ‖Lx‖0.

3: Compute σ̂λ = ‖y − x̂λ‖1/N .
4: end for

Output: Solution {x̂λ̂, λ̂, σ̂λ̂} with λ̂ = arg min
λ∈Λ

F (x̂λ, λ, σ̂λ)

The principle of the proof consists in observing that both (5)
and (13) contain the same data fidelity term, a term proportional to
(Kr − 1) which leads to (14) by identification, and an additional
term independent of r, namely

φ(σ, p) = N log(2σ)− (N − 1) log(1− p) + log σ

− (α1 − 1) log p− (α0 − 1) log(1− p) (16)

+ log(µ+ − µ−).

By inverting (14), φ can be parametrized in terms of (σ, λ), as
in (15).

4. ALGORITHMIC SOLUTION

Now that an explicit expression (15) has been derived for φ, we aim
to solve the nonconvex optimization problem (5) in a deterministic
setting. We propose to use a predefined and fixed discrete grid Λ for
λ and to solve, ∀λ ∈ Λ

(x̂λ, σ̂λ) ∈ Argmin
x∈RN ,σ≥0

1

σ
‖y − x‖1 +

λ

σ
‖Lx‖0 + φ(σ, λ)︸ ︷︷ ︸

F (x,λ,σ)

, (17)

which we estimate as

(∀λ ∈ Λ)

{
x̂λ = arg min

x∈RN
‖y − x‖1 + λ‖Lx‖0,

σ̂λ = ‖y − x̂λ‖1/N.
(18)

The solution triplet {x̂λ̂, λ̂, σ̂λ̂} is then selected such that

λ̂ = arg min
λ∈Λ

F (x̂λ, λ, σ̂λ). (19)

The corresponding algorithm steps are reported in Algorithm 1.
This approach permits to use the dynamic programming algorithm
Pottslab developed in [7,8] to solve the problem (1) for any λ ∈ Λ.

5. ESTIMATION PERFORMANCE

5.1. Experimental setting

Data y are synthesized in two steps. First, the change-point locations
of x are drawn i.i.d. with the given change-point probability p, and
then the value taken on each segment is uniformly drawn between
a minimal value xmin and a maximal value xmax also given before-
hand. Second, we generate ε ∼ Laplace (0, σIN ) and form y =
x+ε. Therefore the mean amplitude between successive segments is
about (xmax − xmin)/3 and its comparison w.r.t. the noise standard
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Fig. 1. Illustration of the proposed method. Three configurations
are examined depending on p and ANR. The proposed criterion
F (x̂λ, λ, σ̂λ) is displayed in red in the second row as a function of
λ while the relative MSE between x̂λ and x is displayed in the third
row. The estimate λ̂ is indicated with a vertical dashed line and the
corresponding solution x̂λ̂ is reported in red in the first row.

deviation
√

2σ is conducted thanks to the so-called amplitude-to-
noise-ratio defined as ANR = (xmax − xmin)/(3

√
2σ).

The hyperparameters are chosen as follows. A non-informative
prior is used for the prior probability p by setting α0 = α1 = 1 so
that the Beta distribution in (11) reduces to a uniform distribution
over (0, 1). In addition, µ+ and µ− are chosen such that µ− <
miny, µ+ > maxy and µ+ − µ− = 104. This choice is further
discussed in Section 5.3.

In our experiments, the set Λ of discrete values for λ has been
composed of 500 values equally spaced, in a log10-scale, between
10−5 and 105.

5.2. Illustration of the automatic selection of λ

Three different observations y (grey) are represented in each column
of Fig. 1 as representatives of different configurations of change-
point probability p and scale parameter σ. The true x that we aim to
recover is displayed in black.

The proposed criterion F (x̂λ, λ, σ̂λ) is displayed in the second
row in solid red as function of λ. The position of its minimum λ̂
(see (19)) is indicated by a vertical dashed red line. The correspond-
ing solution x̂λ̂ is reported in dashed red lines in the first row. It
matches exactly or satisfactorily the location of minimum MSE (be-
tween x̂λ and x) and appears visually as a good estimate of x.

Performance are further quantified in term of relative mean
squared error (MSE) between x̂λ and x as a function of λ in the
third row of Fig. 1. For p = 0.01 and ANR = 1.5 (center column),
the method automatically selects one λ̂ such as the solution benefits
from a lower MSE than for any other λ ∈ Λ. However, when the
ANR decreases (left column) or p increases (right column), the
solution may not be optimal in terms of MSE but still maintains very
good estimation performance close to the minimum MSE.
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Fig. 2. Estimation performance (λ̂ vs. ANR). From top to bot-
tom: p = 0.005, 0.010 and 0.015. Different dynamics are examined
from left to right: xmax − xmin = 0.1, 1, and 10. The average pro-
posed estimate λ̂ is displayed in red as a function of the ANR and is
compared w.r.t λ̂(`2) (mixed magenta) and the MSE oracle estimator
ΛMSE whose range is delimited by dashed white lines. Overall, the
proposed solution (red line) remains between the dashed white lines,
thus showing that x̂λ for λ = λ̂ achieves the best performance in
terms of relative MSE than for any other λ.

5.3. Quantification of estimation performance

In this section, we further examine the estimation performance with
respect to (w.r.t.) the dynamic xmax − xmin ∈ {0.1, 1, 10}, the
change-point probability p ∈ {0.005, 0.01, 0.015} and the ANR. In
Fig. 2, the regularization parameter selected by the proposed method
(λ̂, red) is compared against the similar method developed in [12]
for Gaussian noise (λ̂(`2), magenta). In addition, we also report the
oracle estimate (ΛMSE, dashed white) for which x̂λ∈ΛMSE yields
the lowest MSE and whose range is delimited by two dashed white
lines. Results presented here are averaged over 25 realizations.
Behavior of λ̂. Each plot in Fig. 2 illustrates how λ̂, λ̂(`2) and
ΛMSE vary w.r.t. the ANR. For comparison purposes, the relative
MSE is also superimposed. Overall, the proposed solution (red line)
remains between the dashed white lines, thus showing that x̂λ for
λ = λ̂ achieves the best performance in terms of relative MSE than
for any other λ. However, we observe that the performance deterio-
rate as p increases (see Fig. 2 from top to bottom) as the estimation
problem is more difficult when a larger number of segments needs to
be detected. This is quantified by the shrinking of the oracle range
ΛMSE.Further investigations show that λ̂ scales properly when the
dynamic varies (see translations of red and white lines in Fig. 2 from
left to right): For two observations that are identical up to a scale fac-
tor, the proposed method outputs identical solutions up to that same
scale factor. This does not hold for λ̂(`2).
Comparison of MSE. In addition, estimation performance are com-
pared in terms of relative MSE between x̂λ and x for λ = λ̂ (red),
λ̂(`2) (magenta) and any λ ∈ ΛMSE (black) in Fig. 3. Results il-
lustrate that taking into account the Laplacian nature of the noise
(red) rather than assuming it Gaussian (magenta) achieves systemat-
ically lower relative MSE. In addition, both methods exhibit equiva-
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Fig. 3. Estimation performance (MSE vs. ANR). From top to
bottom: p = 0.005, 0.010 and 0.015. Different dynamics are ex-
amined from left to right: xmax − xmin = 0.1, 1, and 10. For each
configuration, relative MSE ‖x̂λ−x‖/‖x‖ are compared for λ = λ̂

(red), λ̂(`2) (magenta) and any λ ∈ ΛMSE (black). Results show that
including the knowledge that the noise is Laplacian permits to yield
lower MSE.
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Fig. 4. Impact of hyperparameters (MSE vs. µ+−µ−). For each
configuration, λ̂ (red) is plotted as a function of the hyperameter
value µ+−µ−. Results show satisfactory and similar performances
for any choice such as 10 ≤ µ+ − µ− ≤ 106.

lent performance for sufficiently large ANR. Overall, the proposed
method provides MSE performance close to the oracle estimate as p
is small and ANR is large.
Impact of hyperparameter µ+−µ−. For the same configurations
as those presented in Fig. 1, the results displayed in Fig. 4 show that
the tuning of µ+ − µ− does not require a complicated procedure
as the estimation performance are satisfactory and very similar for
10 ≤ µ+ − µ− ≤ 106.
Computational cost. In the experiments presented here, simula-
tions took around 40 seconds for |Λ| = 500 and N = 103.

6. CONCLUSION

Elaborating on previous work [12], the present contribution pro-
moted the use of a Bayesian-driven criterion to estimate the reg-
ularization parameter inherent to the `1-TV`0 minimization prob-
lem. The criterion was derived by drawing an equivalence between
the variational problem and a hierarchical Bayesian formulation of
the change-point detection problem. The equivalence also permitted
to design a numerically efficient algorithm which benefits from low
computational costs. The good performance of the procedure were
evaluated in terms of MSE and compared to oracle estimates.
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[4] A. Mincholé, L. Sörnmo, and P. Laguna, “Detection of body
position changes from the ECG using a Laplacian noise
model,” Biomed. Signal Process. Contr., vol. 14, pp. 189–196,
2014.

[5] R. J. Marks, G. L. Wise, D. G. Haldeman, and J. L. Whited,
“Detection in Laplace noise,” IEEE Trans. on Aerospace and
Electronic Systems, vol. AES-14, no. 6, pp. 866–872, Nov
1978.

[6] M. Wu and W. J. Fitzgerald, “Analytical approach to change-
point detection in Laplacian noise,” IEEE Proc. Vision, Image
and Signal Processing, vol. 142, no. 3, pp. 174–180, Jun 1995.

[7] M. Storath, A. Weinmann, and L. Demaret, “Jump-sparse and
sparse recovery using Potts functionals,” IEEE Trans. Signal
Process., vol. 62, no. 14, pp. 3654–3666, July 2014.

[8] M. Storath, A. Weinmann, and M. Unser, “Exact algorithms for
l1-TV regularization of real-valued or circle-valued signals,” J.
Sci. Comput., vol. 38, no. 1, pp. 614–630, 2016.

[9] L. Chaari, J.-C. Pesquet, J.-Y. Tourneret, and P. Ciuciu, “Pa-
rameter estimation for hybrid wavelet-total variation regular-
ization,” in Proc. IEEE Workshop Stat. Sign. Proc., Nice,
France, June, 28-30 2011.

[10] M. Pereyra, J. M. Bioucas-Dias, and M. A. T. Figueiredo,
“Maximum-a-posteriori estimation with unknown regularisa-
tion parameters,” in Proc. Eur. Sig. Proc. Conference, Nice,
France, Aug 2015, pp. 230–234.

[11] J. P. Oliveira, J. M. Bioucas-Dias, and M. A. T. Figueiredo,
“Adaptive total variation image deblurring: a majorization–
minimization approach,” Signal Process., vol. 89, no. 9, pp.
1683–1693, 2009.

[12] J. Frecon, N. Pustelnik, N. Dobigeon, H. Wendt, and P. Abry,
“Bayesian selection for the regularization parameter in TV`0
denoising problems,” 2016, arXiv preprint arXiv:1608.07739.

[13] M. Lavielle, “Optimal segmentation of random processes,”
IEEE Trans. Signal Process., vol. 46, no. 5, pp. 1365–1373,
1998.

[14] N. Dobigeon, J.-Y. Tourneret, and M. Davy, “Joint segmenta-
tion of piecewise constant autoregressive processes by using a
hierarchical model and a Bayesian sampling approach,” IEEE
Trans. Signal Process., vol. 55, no. 4, pp. 1251–1263, Apr.
2007.

[15] N. Pustelnik, A. Benazza-Benhayia, Y. Zheng, and J.-C. Pes-
quet, “Wavelet-based image deconvolution and reconstruc-
tion,” Wiley Encyclopedia of EEE, 2016.

[16] M. Lavielle and E. Lebarbier, “An application of MCMC meth-
ods for the multiple change-points problem,” Signal Process.,
vol. 81, no. 1, pp. 39–53, Jan. 2001.

[17] E. Punskaya, C. Andrieu, A. Doucet, and W. Fitzgerald,
“Bayesian curve fitting using MCMC with applications to sig-
nal segmentation,” IEEE Trans. Signal Process., vol. 50, no. 3,
pp. 747–758, Mar. 2002.

[18] N. Dobigeon, J.-Y. Tourneret, and J. D. Scargle, “Joint seg-
mentation of multivariate astronomical time series: Bayesian
sampling with a hierarchical model,” IEEE Trans. Signal Pro-
cess., vol. 55, no. 2, pp. 414–423, Feb. 2007.

3843


