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ABSTRACT

In many engineering applications the state of a dynamical system is
modelled by a Stochastic Differential Equation (SDE) evolving in a
“curved” (non-Euclidean) space such as the Stiefel manifold – the
set of n× p real matrices with orthonormal columns, (n ≥ p). Due
to the advances in computing power, the problem of state estimation
can be efficiently addressed by the Particle Filter (PF). However, PF
algorithms have to be completely reworked to handle the geometry,
and the very few papers that properly deal with either the geometry
or the stochastics of the problem are in the mathematics literature
and are not accessible to an engineering audience. With this in mind
and motivated by deterministic schemes on the Stiefel manifold, we
give a direct accessible derivation of a novel PF algorithm for state
estimation on the Stiefel manifold such that the resulting estimators
always remain on the manifold. Our method can be applied to ANY
dynamical system (SDE) on the Stiefel manifold. We do not rely on
differential geometry or advanced stochastic calculus. Simulation
examples are provided.

Index Terms— Sequential Monte Carlo methods, particle filter,
stochastic processes, Stiefel manifold

1. INTRODUCTION

Numerous engineering applications deal with systems evolving in
the Stiefel manifold Vp,n – the set of n × p real matrices with or-
thonormal columns. They include signal processing [1], attitude
control and filtering [2–5], image processing [6], optimization [7],
robotics [8], etc. In this paper with consider the application of parti-
cle filtering (PF) to the state estimation problem on the Stiefel mani-
fold. The state dynamics are modelled by a general stochastic differ-
ential equation (SDE) in the Stiefel manifold, while the (noisy) ob-
servations lie in Euclidean space. Lately, PF methods have become
a very popular class of algorithms for state estimation, which is car-
ried out sequentially as new observations become available. They are
flexible, and can be applied to nonlinear and non-Gaussian dynamic
models.

Prior Work – Until very recently PFs have only been address-
ing systems in Euclidean space (Rm) – See [9, 10]. However, such
filters cannot be considered for filtering problems in other manifolds
(“curved” spaces) because the update schemes tend to immediately
leave the manifold – See examples of this in [5, 11, 12].
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The application of PF methods to state estimation in “curved”
spaces is a relatively recent development. Some examples include
[1, 4, 13–16]. [1] is the only paper to explicitly address state estima-
tion on Vp,n, (p ≤ n), using a PF. Other papers only deal with the
special case where p = n. Here, the Stiefel manifold is a matrix
Lie group called the orthogonal group O(n). In engineering, a fre-
quently considered special case (subgroup) of O(n) is the special
orthogonal group SO(n), and examples that deal with state dynam-
ics evolving in SO(n) are given in [4, 14, 15, 17].

Motivated by the work in [18], the state dynamics in [1] are
not explicity given by a state space model but rather are implicitly
described by a state transition probability density function (pdf) –
the von Mises-Fischer distribution. There are two issues with this;
Firstly, it is not clear how to relate a given SDE to the state transition
pdf in [1]. Secondly, sampling from the von Mises-Fischer pdf can
be difficult. The scheme we develop does not have these problems –
The state dynamics are explicitly described by a general SDE, and it
will be shown that the sampling procedures in the PF are very sim-
ple.

PFs for state estimation on arbitrary Riemannian manifold
(which includes Vp,n) have also been proposed in [19] and [20].
However, these schemes are too abstract, do not explicitly deal
with Vp,n, and so, extensive knowledge of differential geometry
is required in order to specialise the procedures to Vp,n. In [19],
the example provided considers state updates in Rm, which is not
extendable to updates on Vp,n. In [20], the state updates follow a
multivariate affine generalised Hyperbolic distribution. It is not at
all clear what SDE this distribution corresponds to.

Lastly, further existing literature dealing with the Stiefel mani-
fold considers deterministic state dynamics [21, 22], i.e. the dynam-
ical system is modelled by an ordinary differential equation (ODE).
These works do not apply in the stochastic setting, where the avail-
able literature for engineers [23, 24] only deals with systems in
Rm. Dealing with geometric SDEs requires extensive knowledge in
BOTH stochastic calculus and differential geometry – See [25–27].

Current Contribution – In this paper we derive a novel PF
algorithm for state estimation on the Stiefel manifold Vp,n, where
the state dynamics are described by a general SDE. The derivation
is both direct and accessible to engineers. We do not rely on any
differential geometry or stochastic processes theory. The develop-
ment is in vein of our previous work [3,4,11,12,28] and Chirikjian’s
work [29], and is motivated by the ODE algorithms of [21, 22]. The
numerical scheme we develop can be applied to any dynamical sys-
tem (SDE) on the Stiefel manifold.

The paper is organised as follows: In Section 2 we state the
problem of state estimation. Sections 3 and 4 describe the particle
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filtering method for solving the problem, and the method is stated in
Section 5. Simulations and the conclusion are given in Section 6 and
7 respectively.

2. PROBLEM STATEMENT – STATE ESTIMATION IN Vp,n

The State Space Model – We consider a matrix state lying in Vp,n
and evolving according to a general SDE

dX(t) = F0(t,X)dt+

d∑
r=1

Fr(t,X)dWr(t) (1)

where Fi coefficients are known matrix functions of time t and state
X, and dWr(t) ∼ N (0, dt) are i.i.d. Note that Fr’s must satisfy
constraints given in Theorem 1 in [12] in order for (1) to evolve in
Vp,n, i.e. namely

FT0 X + XTF0 = −
d∑
r=1

FTr Fr (2)

FTr X + XTFr = 0, r = 1, . . . , d (3)

When p = n, (2) and (3) reduce to the special case conditions in
[4, 11].

Tangent of Vp,n – Thinking of Vp,n as a “curved” space allows us
to envisage a tangent at a point X ∈ Vp,n. It is given by [7]

TXVp,n = {Zn×p : ZTX + XTZ = 0} (4)

So, (3) implies that Fr ∈ TXVp,n for r = 1, . . . , d. However, from
(2) we see that F0 6∈ TXVp,n, but it can be shown that the drift term
F0dt is a sum of two components: one in the tangent plane, and the
other in the normal plane [12]. The latter we call the “pinning drift”
because it “pins” or keeps the trajectory in Vp,n.

How does one derive (4)? Firstly, supposing that p = 1 implies
Vp,n = V1,n is a hypersphere. So, a trajectory x(t) ∈ V1,n satisfies
x(t)Tx(t) = 1. Differentiating (w.r.t. time) gives ẋTx = 0, and
recalling the elementary geometry that x(t) is normal to the hyper-
sphere, we see that ẋ must be tangent to it. So, in a more general sce-
nario, if X(t) evolves in Vp,n, then differentiating X(t)TX(t) = I
gives ẊTX + XT Ẋ = 0, where Ẋ is an element of the tangent,
which gives (4).

The Estimation Problem – For discrete times t = t1, . . . , tk, define
Xk = X(tk). At each time interval tk let the noisy measurement
Yk ∈ Ru×v of the state Xk ∈ Vp,n be given by

Yk = C(Xk) + Ek (5)

where C : Vp,n → Ru×v and Ek is the noise whose entries are i.i.d.
zero mean Gaussian.

Given the observations {Y1, . . . ,Yk} = Yk1 up to time t = tk,
the aim is to find the minimum Mean Square Error (MSE) estimate
X̂k of the state Xk for each k ≥ 1. The MSE is defined by

E
[
d(X,Xk)2

]
=

∫
Vp,n

d(X,Xk)2p(Xk|Yk1 )dXk (6)

where d(·, ·) is a distance between X and Xk on the “curved” space
Vp,n, p(Xk|Yk1 ) is the posterior probability density function (pdf),
and dXk is the infinitesimal area1 on Vp,n – See [18, 30].

1The Stiefel manifold admits a unit invariant measure whose differential
form we denote by dXk .

Remark 1. (Monte Carlo (MC) approximation) The purpose of
considering PF methods is to avoid calculating difficult integrals
such as (6). So, we approximate them using random samples drawn
from p(·) – Letting S(1), . . . ,S(N) ∼ p(Z), where N � 1, the
following is an MC (sample average) approximation of the mean

∫
Vp,n

φ(Z)p(Z)dZ = E[φ(Z)] ≈ 1

N

N∑
i=1

φ(S(i)) (7)

3. STATE ESTIMATION VIA PARTICLE FILTERING (PF)

Obtaining a state estimator X̂k ∈ Vp,n by minimising (6) with re-
spect to X ∈ Vp,n is usually not possible due to the difficulty in eval-
uating the integral. So, using the sample average (7) to approximate
(6) leads to a much easier minimisation problem. This, however,
involves directly sampling from the posterior p(Xk|Yk1 ) and is diffi-
cult and/or inefficient in general because the relationship between the
state and the observation might be very complicated. Thus, a recur-
sive procedure is needed that takes the samples (particles) from the
previous posterior p(Xk−1|Yk−1

1 ) and transforms them into samples
(particles) from the current posterior p(Xk|Yk1 ). This is the essence
of the PF algorithm.

Filtering Equations – Using samples from p(Xk−1|Yk−1
1 ) to de-

rive samples from p(Xk|Yk1 ) requires obtaining a relation between
the two posteriors. It is given by the standard filtering equations

p(Xk|Yk−1
1 ) =

∫
Vp,n

p(Xk|Xk−1)p(Xk−1|Yk−1
1 )dXk−1 (8)

p(Xk|Yk1 ) ∝ p(Yk|Xk)p(Xk|Yk−1
1 ) (9)

Equation (8) is referred to as the prediction equation, and (9) is the
update equation. These equations are well known (for 50 years [31])
when the system states evolve in Rm [9]. When dealing with sys-
tems in non-Euclidean (“curved”) spaces the integration is no longer
over Rm but rather over the “curved” space. Such examples of the
filtering equations are found in [1,4,13–16,32,33], and their deriva-
tion relies on the Markovian property of the state due to (1), and the
standard conditional pdf relations – See [4].

Particle Filtering – Let S
(1)
k−1, . . . ,S

(N)
k−1 ∈ Vp,n denote the N par-

ticles (samples) drawn from the posterior p(Xk−1|Yk−1
1 ). By ap-

proximating the prediction equation (8) with the MC approximation
(7), the first stage involves obtaining particles from p(Xk|Yk−1

1 ).
So, if S̃

(i)
k ∼ p(Xk|Xk−1 = S

(i)
k−1) for i = 1, . . . , N , then

Theorem 1. S̃
(1)
k , . . . , S̃

(N)
k ∼ p(Xk|Yk−1

1 ) when N � 1.

Sampling from the state transition pdf p(Xk|Xk−1) so as to ensure
the resulting particles remain in Vp,n is discussed in Section 4. The
procedure is very simple and no assumptions are imposed on the
state transition pdf as done in [1].

Obtaining particles from p(Xk|Yk1 ) requires Theorem 1 and the
update equation (9) – Define the “weight” quantities

wik =
p(Yk|Xk = S̃

(i)
k )∑N

j=1 p(Yk|Xk = S̃
(j)
k )

, i = 1, . . . , N (10)
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and let S
(1)
k , . . . ,S

(N)
k denote the N particles chosen (with replace-

ment) from the set {S̃(i)
k }

N
i=1 according to probabilities {wik}Ni=1.2

Then, (9) implies

Theorem 2. S
(1)
k , . . . ,S

(N)
k ∼ p(Xk|Yk1 ) when N � 1.

So, approximating (6) using (7), by Theorem 2 we have

X̂k ≈ arg min
X∈Vp,n

1

N

N∑
i=1

d(X,S
(i)
k )2, S

(i)
k ∼ p(Xk|Yk1 ) (11)

4. SAMPLING FROM p(Xk|Xk−1) BY SOLVING (1)

Sampling from p(Xk|Xk−1) can be done without actually knowing
what this transitional pdf looks like. We only need to obtain Xk

given Xk−1, and this can be done by solving the SDE in (1) on the
small time interval [tk−1, tk]. Both the geometry and the stochastics
need to be taken into account to do this.

Solution of (1) – Denoting the solution of (1) by X(t), what form
can X(t) have? We know that at t = tk−1 it is given by X(tk−1) =
Xk−1 ∈ Vp,n, and so, we need to ensure that X(t) ∈ Vp,n for
t ∈ (tk−1, tk]. Letting Φn×n be an orthogonal matrix, note that

(ΦXk−1)T (ΦXk−1) = XT
k−1(ΦTΦ)Xk−1 = XT

k−1Xk−1 = I

and so, setting X(t) = Φ(t)Xk−1 ensures X(t) ∈ Vp,n. Then

Lemma 1. Any orthogonal Φn×n can be written as Φ = eΩ for
some skew-symmetric Ωn×n (i.e. Ω + ΩT = 0), where e(·) is the
matrix exponential.

So, our “guess” solution for t ∈ [tk−1, tk] becomes

X(t) = eΩ(t)Xk−1, Ω(tk−1) = 0 (12)

Solving ΩT + Ω = 0 leads to n(n − 1)/2 unknowns, and thus, Ω
is completely specified by a vector in Rn(n−1)/2.

Remark 2. Consequently, we have transferred the problem of find-
ing an X(t) in the Stiefel manifold (complicated geometry) to the
problem of finding a skew-symmetric Ω(t), or equivalently an n(n−
1)/2-vector (simple geometry).

Now we have Xk = X(tk) = eΩ(tk)Xk−1. We are given Xk−1,
hence to get Xk we simply need to find Ω(tk).

Finding Ω(tk) – Requires deriving the differential dX of the solu-
tion (12) and equating it with the differential dX from (1). This will
give us an SDE in Ω(t) (space of skew-symmetric matrices), which
is easy to solve numerically,3 allowing us to obtain Ω(tk).

So, by the Taylor series of eΩ, the differential of (12) is

dX =

{
d

dε
eΩ+εdΩ +

1

2

d2

dε2
eΩ+εdΩ + · · ·

}
Xk−1

∣∣∣∣
ε=0

(13)

where εdΩ is a small perturbation of the skew-symmetric Ω.
Note that both dΩ and Ω + εdΩ are skew-symmetric since the

2Choosing samples from a set according to discrete probabilities is well
known. For example, see Remark 2 in [4] to see how this can be done.

3using any numerical technique developed for SDEs in Rm – See [23]

space of skew-symmetric matrices is a vector space (equivalent to
Rn(n−1)/2). Then, by standard calculus

dq

dεq
eΩ+εdΩ ≈ (dΩ)q eΩ+εdΩ, q ≥ 1 (14)

Now, we need to calculate (dΩ)q for all q ≥ 1, and to do this we
suppose a very general structure for dΩ, i.e. without loss of gener-
ality we suppose that Ω(t) obeys the following SDE on the interval
[tk−1, tk]

dΩ = Adt+

d∑
r=1

Br dWr (15)

where A and Br’s are matrices to be found. Since dΩ is skew-
symmetric, A and Br must be skew-symmetric as well. By evaluat-
ing (dΩ)q we can proceed to find A and Br .

We firstly evaluate (dΩ)2, and from (15) we see that it has matri-
ces scaled by (dt)2, dtdWr and dWr dWs. Now, dWr ∼ N (0, dt)
implies that dtdWr has mean 0 and variance O((dt)3). When r 6=
s, dWr and dWs are i.i.d., hence the term dWr dWs has mean 0 and
variance O((dt)2). Lastly, when r = s, the term (dWr)

2 is χ2 dis-
tributed, and hence has mean dt and variance O((dt)2). Since dt is
very small, we can assume (dt)2 = (dt)3 = · · · = 0, which implies
that the terms dtdWr , dWr dWs (r 6= s) have zero variance, i.e. can
be treated as deterministic quantities, and thus, equal their respective
means. So, we can conclude that

(dt)2 = 0, dtdWr = 0, dWr dWs =

{
0 if r 6= s

dt otherwise
(16)

which are called Itō’s rules. Using these

(dΩ)2 =

(
Adt+

d∑
r=1

Br dWr

)2

=

d∑
r=1

B2
r dt (17)

By applying Itō’s rules to the product of (15) and (17) we obtain that
(dΩ)3 = 0. So, we see that (dΩ)q = 0 for any q ≥ 3. Conse-
quently by substituting this in (14), (13) reduces to (Itō’s Lemma)

Theorem 3. dX =
{
d
dε

eΩ+εdΩ + 1
2
d2

dε2
eΩ+εdΩ

}
Xk−1

∣∣∣
ε=0

which is an exact expression (in the mean square sense). Substitut-
ing in Theorem 3 the 1st and 2nd derivatives of eΩ as well as the
expressions for dΩ and (dΩ)2 respectively, the differential becomes

dX = (dΩ)eΩXk−1 +
1

2
(dΩ)2 eΩXk−1

=

{
A +

1

2

d∑
r=1

B2
r

}
Xdt+

d∑
r=1

BrXdWr (18)

To solve for A and Br , we equate (18) and (1), which gives

F0 =

{
A +

1

2

d∑
r=1

B2
r

}
X, and Fr = BrX, r ≥ 1 (19)

Proceeding further requires the following simple result.

Theorem 4. Let X ∈ Vp,n and M ∈ TXVp,n. For an n× n matrix
SX(M) = HMXT − XMTH, where H =

(
I− 1

2
XXT

)
, we

have: (a) SX(·) is skew-symmetric, and (b) SX(M)X = M.
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Proof. Very simple – See [12]. Omitted due to lack of space.
Recalling from Section 2 that Fr ∈ TXVp,n for r = 1, . . . , d,

we can use Theorem 4 (b) to first obtain an expression for Br . We
have that SX(Fr)X = Fr = BrX, where the last equality is from
(19). Thus, Br = SX(Fr) and is indeed a skew-symmetric matrix
by Theorem 4 (a). Next, since A is skew-symmetric note that AX ∈
TXVp,n because it satisfies the equation in (4). So, using Theorem
4 (b) we have AX = SX(AX)X, which implies A = SX(AX),
indeed also skew-symmetric. But, from (19) we have

AX = F0 −
1

2

d∑
r=1

B2
rX = F0 −

1

2

d∑
r=1

SX(Fr)Fr

and so, A = SX

(
F0 − 1

2

∑d
r=1 SX(Fr)Fr

)
.

Now that we have found expressions for A and Br we sub-
stitute them into the SDE for Ω in (15) and solve it numerically
to obtain Ω(tk). Since the space of skew-symmetric matrices is
equivalent to the Euclidean space we obtain Ω(tk) by standard lin-
ear algebra, i.e. dΩ ≈ Ω(tk) − Ω(tk−1) = A(tk−1,Xk−1)∆ +∑d
r=1 Br(tk−1,Xk−1)∆Wr,k−1, where ∆ = tk − tk−1 and

∆Wr,k−1 ∼ N (0,∆). In general, Fr’s are functions of (t,X),
thus, A and Br are also functions of (t,X). Finally, recalling that
Ω(tk−1) = 0 results in

(Geometric Euler) method – Obtain Xk given Xk−1:

Fr,k = Fr(tk−1,Xk−1), r = 0, 1, . . . , d (20)

Ω(tk) = SXk−1

(
F0,k −

1

2

d∑
r=1

SXk−1(Fr,k)Fr,k

)
∆

+

d∑
r=1

SXk−1(Fr,k)∆Wr,k−1 (21)

Xk = eΩ(tk)Xk−1 (22)

Clearly, since Ω(tk) is always skew-symmetric we have that the
state iterates Xk always remain in Vp,n (provided Xk−1 ∈ Vp,n).

5. STATE ESTIMATION (PF) ALGORITHM

Let X(0) = X0, and at t = t0 = 0 assume we can sample from the
posterior p(X0|Y0

1 ) = p(X0).
Initialisation: For i = 1, . . . , N , draw S

(i)
0 ∼ p(X0). Compute the

estimator X̂0 using (11). Let t = tk and k = 1. Then:

(a) For each i = 1, . . . , N , using S
(i)
k−1 ∼ p(Xk−1|Yk−1

1 ), draw
S̃
(i)
k ∼ p(Xk|Xk−1 = S

(i)
k−1) in the following way:

1. In (20) and (21) let Xk−1 = S
(i)
k−1.

2. Compute S̃
(i)
k using (22), i.e. S̃

(i)
k = eΩ(tk)S

(i)
k−1.

(b) Draw {S(i)
k }

N
i=1 ∼ p(Xk|Yk1 ) in the following way:

1. Using {S̃(i)
k }

N
i=1 compute the weights {wik}Ni=1 in (10).

2. DrawN samples, denoted by {S(i)
k }

N
i=1, from {S̃(i)

k }
N
i=1

with probabilities {wik}Ni=1.

(c) Using {S(i)
k }

N
i=1, compute the estimator X̂k in (11).

(d) Let k be k + 1, and go to (a).

6. SIMULATIONS

Here we illustrate the above PF algorithm. We let C(Xk) =
vec(Xk) = xk ∈ Rnp obtained by stacking columns of Xk on top
of one another. So, Yk = yk ∈ Rnp and Ek = εnp×1 ∼ N (0,Σ).
Thus, in (10) we have p(Yk|Xk = S̃

(i)
k ) ∝ e−

1
2
δT
k Σ−1δk , where

δk = yk − vec(S̃
(i)
k ). To obtain X̂k in step (c) of the PF algo-

rithm we solve the minimisation problem in (11) using the simple
Algorithm 1 from [6]. It requires the map Exp : T(·)Vp,n → Vp,n
and its inverse Exp−1 = Log. Simple schemes (written in Mat-
lab) to obtain these maps are Algorithm 2.1 and 3.1 respectively,
in [34]. Finally, in the state SDE (1) we let d = 1, F1 = P1X and
F0 = XP0 − 1

2
XFT1 F1, where P0 ∈ Rp×p and P1 ∈ Rn×n are

arbitrary skew-symmetric matrices.4

Fig. 1: PF performance, where v is an arbitrary np-vector. The
initial particles S

(i)
0 ’s are {eεQiX0}Ni=1, where X0 = [ITp×p,0

T ]T ,
Qi’s are skew symmetric with non-zero entries ∼ N (0, 1) and ε =
0.2. We let n = 3, p = 2,N = 1500 and covariance Σ = 0.1×I ∈
Rnp×np. Lastly, ∆ = tk − tk−1 = 1/100.

Fig. 2: Plotting the error in the PF estimator for the setup in Fig 1.
As we can see the PF iterates remain in Vp,n.

7. CONCLUSION

We demonstrated in an accessible way how the particle filter devel-
oped for state estimation in Rm can be extended to the Stiefel mani-
fold. A simple numerical method has been derived, and an example
simulation has illustrated its usage.

4It can be easily verified that the chosen F0 and F1 satisfy the necessary
conditions (2) and (3).
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