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ABSTRACT

Given that a sequence x(n) is periodic with period P be-
longing to a known integer set {P1, P2, . . . PL}, what is the
minimum number of samples of x(n) required to find the pe-
riod? For the special case where the samples of x(n) are con-
strained to be contiguous in time, this problem has recently
been solved. More generally, when the samples are allowed
to be non-contiguous, the problem is quite difficult. This
paper provides the answer for the restricted situation where
P ∈ {P1, P2}. With P1 < P2, the necessary and sufficient
number of (possibly noncontiguous) samples for period esti-
mation turns out to be (a) P1, if P1 is not a divisor of P2, and
(b) P2 otherwise. While the proof is quite involved even in
this restricted case, it is likely to form the basis for addressing
the more general situation where P ∈ {P1, P2, . . . PL}.

Index Terms— Period Estimation, Minimum Samples,
Ramanujan Sums, Nested Periodic Matrices.

1. INTRODUCTION

Periodic signals arise in many applications of science and
engineering [1, 2, 4, 5], and there are several techniques to
identify the period based on Fourier and non-Fourier methods
[12, 16, 9, 17, 6, 14]. In discrete time, we say that x(n) has
period P if x(n) = x(n + P ) for all n, and P is the small-
est positive integer with this property. Most of the known
techniques obtain an estimate of P from a larger number of
samples, and one basic question has largely escaped attention
in the past. Namely, what is the minimum number of sam-
ples of x(n) necessary to identify P , if P is known to belong
to some integer set? Very recently this question has been ad-
dressed for the case where the samples used are required to
be contiguous [13]. The result is as follows:

Theorem 1. Let x(n) be a periodic signal, whose period is
known to lie in the integer set P = {P1, P2, . . . , PK}. If
one were to estimate the period using L consecutive samples,
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then, it is both necessary and sufficient for L to satisfy:

L ≥ Lmin = max
Pi,Pj∈P

Pi + Pj − gcd(Pi, Pj) (1)

For the special case where P ∈ {1, 2, · · ·Pmax}, the above
number of samples becomes 2Pmax − 2.

Next, if the samples are allowed to be non-contiguous, can
the period be estimated using a smaller number of samples? If
so, what exactly is that number? In this paper we will address
this question for the simple case where P ∈ {P1, P2}. While
this is admittedly a very restricted special case, we consider
it for two reasons. Firstly, even in this case the details are
quite involved, and secondly, this might be the basis for future
generalizations to more useful practical situations. Our main
result in this paper is the following:

Theorem 2. Given a periodic signal x(n) whose period P
lies in the set P = {P1, P2}, where P1 < P2, the following
number of samples is necessary and sufficient to identify P :

Mmin =

{
P2 if P1 divides P2

P1 otherwise
(2)

Notice that when P1 divides P2, Lmin (Eq. (1)) and
Mmin (Eq. (2)) are equal. So even if the samples are allowed
to be non-contiguous, the period cannot be estimated using
a smaller number of samples than Lmin in this case. How-
ever, when P1 does not divide P2, Mmin can be significantly
smaller than Lmin. For example, let us consider the case
where P1 = 8 and P2 = 50. For the contiguous samples
case, the minimum number of samples is 56, and a set of such
sample locations are:

{0, 1, 2, . . . , 54, 55} (3)

For the non-contiguous case, the minimum number of sam-
ples required is only 8, and an example of the sample loca-
tions that work are:

{0, 1, 50, 51, 100, 101, 150, 151} (4)
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Notice how the non-uniform sample locations occur in uni-
formly spaced bunches.

Outline: The sufficiency and necessity parts of Theorem 2 are
proved in Sec. 2 and Sec. 3 respectively. In the presence of
noise, having more samples than Mmin improves the accu-
racy of period estimation. This is demonstrated in Sec. 4.

Notation:

1. D|P denotes that D is a divisor of P . D � P denotes
that D is not a divisor of P .

2. The greatest common divisor (gcd) of two numbers P
and Q is denoted by (P,Q).

3. P mod Q returns the remainder of dividing P by Q.

4. φ(D), the Euler-totient function of D, is equal to the
number of positive integers smaller than and co-prime
to D.

2. PROVING SUFFICIENCY

Let us start with the following lemma:

Lemma 1. Let x(n) be periodic with period P . Let y(n) be
the M -fold decimated version of x(n), that is,

y(n) = x(Mn), ∀ n ∈ Z (5)

Then, y(n) is also periodic, its period being a divisor of
P

(M,P ) .

Proof.

y

(
n+

P

(M,P )

)
= x

(
Mn+M

P

(M,P )

)
= x(Mn)

= y(n)

So P
(M,P ) is a repetition index of y(n). A repetition index of

a signal must always be a multiple of its period (see Lemma 3
in [15]). This completes the proof.

When M is coprime to P in the above result, we can say
something more:

Lemma 2. Let x(n) be periodic with period P �= 1. Let M
be an integer coprime to P , and let y(n) = x(Mn). Then,
y(n) is periodic with period �= 1.

Proof. From Lemma 1, it follows that y(n) must be periodic
with period being a divisor of P . So y(n) can have period 1
if and only if all the entries in the following set are equal:

Y = {y(0), y(1), . . . , y(P − 1)} (6)

Using (5), we can re-write Y as:

Y = {x(0), x(M), . . . , x(MP −M)} (7)

Since x(n) is periodic with period P , we can re-write this
further as:

Y={x(0 mod P ), x(M mod P ), . . . , y(MP −M mod P )}

It is a well known result in Number Theory that when
(M,P ) = 1, the following two sets are just permuted ver-
sions of each other:

{(0 mod P ), (M mod P ), . . . , (MP −M mod P )}
= {0, 1, . . . , P − 1}

Hence the set Y is in fact (a permuted version of) the follow-
ing set:

{x(0), x(1), . . . , x(P − 1)} (8)

Since x(n) has period P �= 1, all the elements in the above
set cannot be equal to each other, due to which the period of
y(n) cannot be 1.

We will use the above two lemmas to prove the sufficiency
part of Theorem 2. We will do this by considering two distinct
cases as follows:

2.1. Sufficiency when P1|P2

In this case, we can directly use Theorem 1. When P1|P2,
P1 + P2 − (P1, P2) = P2. Hence, using Theorem 1, we can
conclude that P2 samples are sufficient to estimate the period.

2.2. Sufficiency when P1 � P2

When P1 � P2, we have to prove that P1 samples are sufficient
to find the period. We will start with the case when P1 and
P2 are coprime, and then extend the proof to the more general
case.

Let y(n) = x(P2n). If x(n) had period P2, then the pe-
riod of y(n) is clearly 1. However, if x(n) had period P1,
and if (P1, P2) = 1, then y(n) cannot have period 1 (using
Lemma 2). To check whether y(n) has period 1, we need at
most P1 samples of y(n), since its period can only be a divi-
sor of P1. This proves that P1 samples are sufficient to find
the period when (P1, P2) = 1.

Let us now consider the more general case when (P1, P2) =
G, where G is not necessarily 1. We propose to use the setup
shown in Fig. 1. If x(n) has period P2, then clearly, all the
outputs y0(n), y1(n), . . . , yG−1(n) will have period 1. How-
ever, if x(n) has period P1, then at least one of those outputs
will have period > 1.

To prove this, we re-draw Fig. 1 as shown in Fig. 2. If
x(n) had period P1, then at least one of u0(n), u1(n), . . .
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Fig. 1. Finding the period of x(n) when (P1, P2) = G �= P1. See

text for details.

uG−1(n) must have period > 1. This is because, if all of
them have period 1, then x(n) must satisfy:

x(n+G) = x(n) ∀ n ∈ Z (9)

That is, G must be a repetition index, which then necessitates
that P1|G (since the period of a signal must always divide any
repetition index). For P1 to divide its gcd with P2, P1 must
divide P2, which contradicts our assumption that P1 � P2.
This shows that at least one of u0(n), u1(n), . . . , uG−1(n)
must have period > 1.

Let us assume that ui(n) has period > 1. Because of
Lemma 1, the period of ui(n) must be a divisor of P1

G . Fur-

ther, since P1

G and P2

G are always co-prime, any divisor of P1

G

is also coprime to P2

G . So using Lemma 2, we can conclude
that the period of yi(n) must be > 1.

So by checking whether or not all of y0(n), y1(n), . . . ,
yG−1(n) have period 1, we can estimate the period of x(n).
How many samples of each yi(n) do we need to establish
its period? Because of Lemma 1, u0(n), u1(n), . . . , uG−1(n)
can have their periods as any divisors of P1

G , and so the out-
puts y0(n), y1(n), . . . , yG−1(n) can have their periods as any
divisors of P1

G . So P1

G samples of each output are sufficient to
check if they have period 1. Since there are G such outputs,
it follows that P1

G × G = P1 samples of x(n) are sufficient
to determine whether the period of x(n) is P1 or P2. This
completes the proof of the sufficiency part of Theorem 2.

Notice that the P1 samples of x(n) required in the above
technique occur in uniformly spaced bunches as shown in
Eq. 4. There are P1/G bunches, spaced P2 samples apart,
and with G contiguous samples within each bunch.

3. PROVING NECESSITY

We will first show that at least P1 samples are necessary to
find the period, irrespective of whether P1|P2 or P1 � P2.
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Fig. 2. Re-drawing Fig. 1 for analysis. See text for details.

Later, we will show that when P1|P2, P2 samples are neces-
sary.

Theorem 3. Let P1 and P2 be positive integers such that
P1 < P2. Then, given any set of L < P1 integers NT =
{n1, n2, . . . , nL}, there exist periodic signals xP1(n) and
xP2

(n) with periods P1 and P2 respectively such that

xP1(n) = xP2(n) ∀ n ∈ NT (10)

Proof. Since L < P1, there exists at least one integer in
the set {0, 1, . . . , P1 − 1} that does not belong to the set
{(n1 mod P1), (n2 mod P1), . . . , (nL mod P1)}. Let m be
such an integer. We define xP1

(n) as follows:

xP1(n) =

{
0 if n mod P1 = m

1 otherwise
(11)

It is easy to see that xP1
(n) has period P1. Notice that

xP1(n) = 1 ∀ n ∈ NT . In the same way, we can construct a
period P2 signal xP2

(n) that satisfies xP2
(n) = 1 ∀ n ∈ NT .

Clearly, for these xP1
(n) and xP2

(n), (10) is satisfied. This
completes the proof.

We will now prove that when P1|P2, one needs at least P2

samples to estimate the period.

Theorem 4. Let P1|P2. Then, given any set of L < P2

integers NT = {n1, n2, . . . , nL}, and any period P1 signal
xP1

(n), there exists a period P2 signal xP2
(n) such that

xP1(n) = xP2(n) ∀ n ∈ NT (12)

Proof. Let xP2
(n) be defined to be equal to xP1

(n) for all
n ∈ NT . Is it possible that doing so violates the following
condition:

xP2
(n+ P2) = xP2

(n) (13)
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Fig. 3. Error rate vs. number of samples. P1 = 9, P2 = 13, SNR =

0dB. See Sec. 4 for details.

for some n, n + P2 ∈ NT ? Luckily no, since n + P2 can be
written as n + kP1 for some integer k, and so xP1

(n) will
satisfy:

xP1(n+ P2) = xP1(n) (14)

Further, since L < P2, there exists at least one integer
in the set {0, 1, . . . , P2 − 1} that does not belong to the set
{(n1 mod P2), (n2 mod P2), . . . , (nL mod P2)}. Let m be
such an integer. Moreover, let u and v be integers such that
u > maxn xP1

(n) and v < maxn xP1
(n). We define xP2

(n)
as follows:

xP2
(n) =

⎧⎪⎨
⎪⎩
xP1

(n) if n mod P2 ∈ NT

u n mod P2 = m

v otherwise

(15)

It is easy to see that xP2
(n) has period P2 (u occurs only once

every P2 samples). Hence, we have constructed a period P2

signal xP2
(n) satisfying the conditions of the theorem.

This completes the proof of Theorem 2.

4. SIMULATIONS UNDER NOISE

We can easily adapt the period estimation techniques of Sec. 2
to deal with noisy inputs. Recall that the period estimation
techniques in Sec. 2.2 involve, apart from downsampling,
checking whether certain signals have period 1. When there
is noise, we can compute the sample variance of a signal to
check whether its period is 1. If the variance is less than
a suitably chosen threshold, we may hypothesize that the
period is 1.

In the following experiments, we chose P1 = 9 and P2 =
13. Let x(n) denote the input, and y(n) = x(P2n). If x(n)
had period P2, then the period of y(n) is 1. However, if x(n)
had period P1, then y(n) cannot have period 1, and is in fact
a permutation of the input itself (Lemma 2). Let us now as-
sume that x(n) was contaminated by an independent AWGN
process s(n) with sample variance σ2

n. Further, suppose that
x(n) was itself a randomly generated periodic signal, that is,

Fig. 4. Error rate vs. SNR for the minimum samples case. P1 = 9,

P2 = 13, number of samples = P1 = 9. See Sec. 4 for details.

with sample values in one period randomly generated with
sample variance σ2

x.
In this case, y(n) would have sample variance σ2

y given
by:

σ2
y =

{
σ2
x + σ2

n if x(n) had period P1

σ2
n if x(n) had period P2

(16)

So we may choose a threshold parameter T = σ2
n +

σ2
x

2 , and
predict the input period as P1 if the observed variance of y(n)
is larger than T , and as P2 otherwise.

Using this technique, the following two experiments were
performed. First, we study the accuracy of the period esti-
mate as a function of the number of samples of y(n) used for
computing σ2

y . The SNR was 0dB. The minimum number of
samples needed in this case, as given by Theorem 2, is 9. For
each value of ‘number of samples’, we generated 50000 sig-
nals with periods randomly chosen from the set {P1, P2}. In
Fig. 3, the fraction of times the period was incorrectly esti-
mated is plotted as the error rate. It is intuitive that the error
rate decreases as we have more samples. In our second exper-
iment, we fixed the number of samples to be P1, and plotted
the error rate for various values of SNR (Fig. 4). Once again,
as is consistent with intuition, we observed that the error rate
decreases as the SNR increases.

5. CONCLUSION AND FUTURE WORK

This paper derived the minimum necessary and sufficient
number of samples to identify the period of a signal from a
set of size 2. This is a simple step in the generalization of the
recent results of [13], to non-contiguous samples. Further, it
was shown through simulations that in the presence of noise,
having more samples than the minimum number improves
the accuracy of period estimation.

It will be interesting to extend these results to the case
when the period of x(n) is known a priori to belong to an ar-
bitrarily sized set P = {P1, P2, . . . , PL}. We are also work-
ing towards extending these results to the case when the input
is a mixture of multiple periodic signals, and to the case of
multidimensional signals.

3827



6. REFERENCES

[1] M. A. Andrade, C. P.-Iratxeta and C. P. Ponting, “Protein
repeats: Structures, functions, and evolution”, J. Struc-
tur. Biol., vol. 134, pp.117 -131 2001.

[2] A. Grover, A. Veenu and P. C. Sharma, “Searching Mi-
crosatellites in DNA Sequences: Approaches Used and
Tools Developed.”, Physiology and molecular biology
of plants: an international journal of functional plant bi-
ology, 18.1 (2012): 1119. PMC. Web. 28 July 2015.

[3] G. H. Hardy and E. M. Wright, “An introduction to
the theory of numbers”, Oxford University Press, Inc.,
2008.

[4] A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott and
R. A. Collins, “Observation of a rapidly pulsating radio
source”, Nature 217, 709 - 713, Feb 1968.

[5] L. T. Mainardi, M. Bertinelli, and R. Sassi, Analysis
of T-wave alternans using the Ramanujan Transform”,
Computers in Cardiology, vol. 35 pp. 605-608, 2008.

[6] D. D. Muresan and T. W. Parks, “Orthogonal, Exactly
Periodic Subspace Decomposition”, IEEE Transactions
on Signal Processing, Vol. 51, no. 9, September 2003.

[7] M. Nakashizuka, “A Sparse Decomposition for Periodic
Signal Mixtures”, Proc. of the 15th Intl. Conf. on Digital
Sig. Proc., 2007.

[8] B. Santhanam and P. Maragos, “Harmonic analysis and
restoration of separation methods for periodic signal
mixtures: Algebraic separation vs comb filtering,” Sig-
nal Process., vol. 69, no. 1, pp. 8191, 1998.

[9] W. A. Sethares and T. W. Staley, “Periodicity trans-
forms,” IEEE Trans. on Sig. Proc., vol. 47, pp. 2953 -
2964, Nov. 1999.

[10] S. V. Tenneti and P. P. Vaidyanathan, “Ramanujan Fil-
ter Banks for Estimation and Tracking of Periodicities”,
Proc. IEEE Int. Conf. on Acoust., Speech, and Sig.
Proc., Brisbane, Australia, 2015.

[11] S. V. Tenneti and P. P. Vaidyanathan, “Nested Periodic
Matrices and Dictionaries: New Signal Representations
for Period Estimation,” IEEE Transactions on Signal
Processing, vol. 63, no. 14, pp. 3736-3750, July, 2015.

[12] S. V. Tenneti and P. P. Vaidyanathan, “A Unified Theory
of Union of Subspaces Representations for Period Esti-
mation,” IEEE Trans. on Sig. Proc., vol. 64, no. 20, pp.
5217-31, Oct, 2016.

[13] S. V. Tenneti and P. P. Vaidyanathan, “Critical Datal-
ength for Period Estimation”, Proc. IEEE Int. Symp. on
Circuits and Systems, Canada, 2016.

[14] P.P. Vaidyanathan and S.V. Tenneti, “Properties of Ra-
manujan Filter Banks”, Proc. European Signal Process-
ing Conference, France, August 2015.

[15] P. P. Vaidyanathan, “Ramanujan sums in the context of
signal processing: Part I: fundamentals” IEEE Trans. on
Signal Processing, Vol. 62, No. 16, pp. 4145 - 4157, Au-
gust 2014.

[16] P. P. Vaidyanathan, “Ramanujan sums in the context of
signal processing: Part II: FIR representations and ap-
plications” IEEE Trans. on Signal Processing, Vol. 62,
No. 16, pp. 4158 - 4172, Augut 2014.

[17] J. D. Wise, J. Caprio and T. W. Parks, “Maximum
Likelihood Pitch Estimation” IEEE Trans. on Acoustics,
Speech, and Signal Processing, vol. assp-24, no. 5 , Oc-
tober 1976.

[18] M. Zou, Z. Chai and R. Unbehauen, “Separation of pe-
riodic signals by using an algebraic method,” IEEE In-
ternational Sympoisum on Circuits and Systems, vol.5,
pp.2427-2430, June 1991.

3828


