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ABSTRACT

ProSparse is a Prony’s based method that solves the sparse
representation problem of signals in the union of Fourier and
canonical bases. By exploiting the structure of the dictionary,
ProSparse is able to reconstruct sparse signals beyond the re-
covery bound of Basis Pursuit. We generalize this framework
for a broader class of dictionaries which are still formed from
the union of two bases. The proposed algorithm achieves per-
fect reconstruction over a lower sparsity level than Basis Pur-
suit in noiseless cases. In the presence of noise, we extend
the ProSparse Denoise algorithm to the generalized dictio-
naries by considering their intrinsic structure. The original
ProSparse can be viewed as a special case of our proposed al-
gorithm. From simulation results, our approach outperforms
state-of-the-art algorithms.

Index Terms— Sparse representation, Prony’s method,
union of bases, denoising

1. INTRODUCTION

The sparse representation problem is to estimate a K-sparse
vector x∈ CM from an observation y∈ CN under dictionary
D∈ CN×M with M > N :

y = Dx, (1)

where ||x||0 ≤ K with ||x||0
def
= #{n : |x[n]| 6= 0}.

The sparse representation problem is usually solved us-
ing convex relaxation methods such as Basis Pursuit (BP)
or greedy algorithms such as Orthogonal Matching Pursuit
(OMP) methods [1, 2, 3, 4], Compressive Sampling Match-
ing Pursuit (CoSAMP) [5] or Subspace Pursuit (SP) method
[6]. And the performance of these methods is pretty well un-
derstood [7, 8, 9, 10, 11].

ProSparse (Prony’s based sparsity) method [12] consid-
ers a classical sparse representation problem where the ob-
served signal is sparse in the union of Fourier and canonical
bases. This means that the signal is a combination of ex-
ponentials and spikes. ProSparse method recovers a wider
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range of sparsity patterns than BP [13] in polynomial com-
plexity. Its main idea is to search for clean segments which do
not contain spikes and recover the exponentials using Prony’s
method. The spikes can then be retrieved from the residual.
To recover sparse signal from noisy observation, Cadzow de-
noising [14] is adopted in ProSparse Denoise method [15] to
estimate the underlying exponentials. The spikes are itera-
tively removed from the residual between observation and
the estimated Fourier signal. Due to the periodicity prop-
erty of Fourier transform, a fast version of Cadzow denois-
ing, which is based on fast Fourier Transform (FFT) and non-
iterative shrinkage, replaces the traditional iterative Cadzow
denoising [14]. Compared with state-of-the-art algorithms
[5, 6, 13, 16, 17], ProSparse Denoise offers higher probabil-
ity of support retrieval and lower complexity. The philosophy
behind ProSparse [12, 15, 18, 19] is to fully exploit the struc-
ture of the dictionary to achieve low complexity and better
performance rather than focusing on the universality of the al-
gorithm. However, the dictionary is still essentially restricted
to the union of Fourier and canonical bases. It is essential
to enable robust recovery from a broader class of dictionaries
with deterministic structure.

In this paper, we extend ProSparse [12, 15] to recover
sparse vectors with an extended class of dictionary and
achieve perfect reconstruction in noiseless scenario and ro-
bust recovery in noisy case. We show that signals which are
sparse in a dictionary, which is in the formD = [V ,V ΛV H ]
where V H is an orthogonal Vandermonde-like matrix, can
be recovered using a ProSparse-like algorithm. In noiseless
scenario, the exponential components corresponding to the
Vandermonde-like matrix is recovered using Prony’s method
and the rest of sparse signal can be estimated from the resid-
ual signal. In noisy case, the exponentials are estimated using
Cadzow denoising with a noise pre-whitening step. The ex-
ponential frequencies are measured using Prony’s method,
and amplitudes are recovered with least squares. An iterative
spike removal scheme gradually estimate the spikes. The
simulation results show our proposed algorithm outperforms
state-of-the-art sparse recovery algorithms.

The rest of the paper is organized as follows: Section 2
gives a more detailed introduction about ProSparse [12] and
ProSparse Denoise [15]. Section 3 introduces a new class of
dictionaries and sparse recovery algorithms for both noiseless
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and noisy observations. Section 4 presents simulation results
and Section 5 draws conclusions.

2. RELATED WORKS

When the dictionary is the union of canonical and Fourier
bases D = [I,F ], the observation is the sum of Kp spikes
and Kq exponentials:

y[n] =

Kp∑
k=1

akδ[n− nk] +
1√
N

Kq∑
k=1

bke
j 2π
N mkn, (2)

where 0 ≤ n < N , 0 ≤ n1 < ... < nKp < N , 0 ≤ m1 <
... < mKq < N , and ak, bk are non-zero weights.

With Prony’s method, the Kq exponential frequencies
can be extracted from the segment between two spikes which
has at least 2Kq consecutive entries. The insight of Prony’s
method is that any Kq + 1 consecutive terms on the segment
without spikes forms a Kq order difference equation. With
the coefficients of this difference equation (called annihilating
filter), the exponential components can be extracted through
the eigenvalues of its companion matrix. The spikes can then
be obtained from the residual signal given by the difference
between the observation and the estimated Fourier contribu-
tion. The ProSparse algorithm [12] searches for all (Kp,Kq)
combinations which fulfills KpKq < N/2 and gives Kq

distinctive exponentials. If Kq > Kp, it is computationally
more efficient to first retrieve Kp spikes from the dual signal
FHy = [F , I]x where the spikes are transformed into Kp

complex exponentials.
In the presence of noise, ProSparse algorithm [12] will

fail as the Prony’s method is sensitive to noise. The ProSparse
Denoise [15] treats the spikes as noise and applies Cadzow
denoising [14] to separate exponentials from noise. The
spikes are iteratively removed from the residual signal. At
the end, the Fourier atoms are estimated from the denoised
signal using Prony’s method. Cadzow denoising [14] builds
a Toeplitz matrix with all elements of y[n] and make it as
square as possible. If there is no noise, the rank of this
Toeplitz matrix is still Kq . However, it will become full
rank if noise is present. Cadzow denoising iteratively tries
to find a matrix belonging to the intersection between the
non-convex manifold of low rank matrix and linear space of
Toeplitz matrices. The periodicity of Fourier atoms enables a
fast circulant Cadzow algorithm which is based on FFT and
on finding directly a rank-Kq Toeplitz matrix.

3. PROSPARSE EXTENSIONS

ProSparse [12, 15] exploits the structured property of expo-
nentials, which corresponds to the Fourier basis, in the ob-
served signal. The Fourier basis is a special case of Vander-
monde matrices whose rows are powers of a vector. We now

show that ProSparse algorithm can be applied to a class of
more general dictionary.

Definition: Any matrix A = ΓWS, where Γ ∈ CN×N

is a diagonal matrix, W ∈ CN×M is a Vandermonde matrix,
and S ∈ CM×N has sparse columns with bounded sparsity
B, is called an orthogonal Vandermonde-like matrix when
AH = ∆A−1 where∆ is a diagonal matrix.

We note that the Vandermonde matrix W may not have
the periodic property as the Fourier basis. Let define an indi-
cator τ = 0 for W with periodic property and τ = 1 other-
wise.

Proposition 1: AssumeD = [V ,V ΛV H ], where V H ∈
CN×N is an arbitrary orthogonal Vandermonde-like matrix
and Λ ∈ RN×N is a diagonal matrix with non-zero diago-
nals. Let y ∈ CN be an arbitrary signal. A ProSparse-like
algorithm is able to find all (Kp,Kq)-sparse signal x ∈ C2N

with a worst-case complexity of O(N3) such that:

y = Dx
and BKq(Kp + τ) ≤ (N − 1 + τ)/2.

(3)

Proof : We have V H = ∆V
−1

and the dictionary can
be factorized as a union of a diagonal matrix (ΓΛ)−1 and a
matrixWS:

(∆ΓΛ)
−1
V HD = [(ΓΛ)

−1
,WS]. (4)

Given y = Dx and based on Eqn.(4), we have that:

(∆ΓΛ)
−1
V Hy = (ΓΛ)

−1
xp +WSxq, (5)

where x = [xTp ,x
T
q ]T , xp,xq ∈ CN , ||xp||0 = Kp, and

||xq||0 = Kq .
As Sxq is the sum of Kq sparse vectors from S, its spar-

sity is bounded by ||Sxq||0 ≤ BKq . Thus the observation is a
combination of Kp spikes (ΓΛ)−1xp and BKq exponentials
WSxq . Prony’s method requires a clean window of size at
least 2BKq to retrieve BKq exponentials. Once these are re-
trieved, the residual consists of Kp non-zero spikes weighted
by (ΓΛ)

−1. Their amplitudes can be recovered by multiply-
ing by ΓΛ.

Due to the possible periodicity of W , the Kp spikes split
the observed signal into Kp + τ segments. Let Nxp be the
number of length 2BKq intervals which are clean and di the
length of ith segment which is the one not corrupted by spikes
with 1 ≤ i ≤ Kp+τ . The total length of all clean segments is
the difference between the length of the observed signal and
the number of spikes and equals to N − Kp. The number
of length 2BKq intervals within the ith segment is at most
di − 2BKq + 1 (if di < 2BKq , it cannot contain a length
2BKq interval). Thus, Nxp

can be computed as:

Nxp =
∑

1≤i≤Kp+τ

max(0, di − 2BKq + 1)

≥
∑

1≤i≤Kp+τ

di − 2BKq + 1
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=

 ∑
1≤i≤Kp+τ

di

− (Kp + τ)(2BKq − 1)

= N − 2KqKp + τ(1− 2BKq). (6)

The sufficient and necessary condition for Nxp
≥ 1 (i.e.

the perfect reconstruction of the sparse signal) is:

BKq(Kp + τ) ≤ (N − 1 + τ)/2. (7)

The sufficiency is straightforward. The necessity can be
shown by an example with Kp spikes which divide the signal
into Kp + τ segments with equal length. Assuming N can be
divided byKp+τ , di = N/(Kp+τ)−1 for 1 ≤ i ≤ Kp+τ .
If BKq(Kp + τ) > (N − 1 + τ)/2, it leads to di < 2BKq

which impliesNxp = 0. �
Let us show two examples of the orthogonal Vandermonde-

like matrix. WhenW is the transpose of the discrete Fourier
matrixFH andΓ, S are identity matrices,V ΛV H = FΛFH

is a circulant matrix. Further, if Λ is also an identity matrix,
the union of bases [F , I] analyzed in ProSparse [12, 15] can
be regarded as a special case of [F ,FΛFH ]. The DCT ma-
trix can also be written in the form ΓWS with M = 2N .
The diagonal matrix Γ = 1√

2N
diag{ 1√

2
, 1, 1, ...1}. The

rows of the Vandermonde matrix W are powers of vec-
tor p = [p0, p1..., p2N−1]T with pn = e−jπ(n+0.5)/N for
0 ≤ n < N−1 and pn = ejπ(n+0.5)/N forN ≤ n < 2N−1.
The sparse matrix S = [1, 1]T ⊗I , where⊗ is the Kronecker
product.

3.1. Noisy Case

For dictionary D = [V ,V ΛV H ], we propose an algorithm
similar to the ProSparse Denoise [15] to recover the sparse
signal x ∈ C2N from noisy observation y ∈ CN :

y = Dx+ ε, (8)

where ε[n] are independent and identical distributed random
variables from a normal distribution, for 0 ≤ n < N .

Multiplying the noisy observation with (∆ΓΛ)−1V H

makes the white noise ε coloured if the diagonal values on
(∆ΓΛ)−1 are not the same. The obtained signal consists of
spikes weighted by (ΓΛ)−1, sum of exponentials WSxq ,
and coloured noise (∆ΓΛ)−1V Hε:

(∆ΓΛ)−1V Hy = (ΓΛ)−1(xp +∆−1V Hε) +WSxq,
(9)

where xp,xq ∈ CN , ||xp||0 = Kp, and ||xq||0 = Kq .
Our strategy is to first separate the structured component,

which is the sum of exponentials, from the unstructured one,
which consists of spikes and noise. Cadzow denoising [14],
which is the noise resilient version of Prony’s method, is uti-
lized in [15] to retrieve the exponentials for signal separation.
As Cadzow denoising assumes white noise, a pre-whitening
process is necessary before exponentials extraction. Cadzow

Algorithm 1 ProSparse Denoise Extension

Input: Noisy observation y and sparsity (Kp,Kq).
Output: (Kp,Kq)-sparsity vector x̃ = [xTp ,x

T
q ]T .

1: Initialize xp = 0, indices Ω = {0, 1, ..., N − 1}
2: Let yE = (∆ΓΛ)−1V Hy and K̃q = max(16, 2BKq).
3: Denoise y

′

E = CadzowQSVD(yE , K̃q).
4: Estimate xq = Prony(y

′

E , K̃q).
5: for i=1 to Kp do
6: Compute residual r = ΓΛ(yE − y

′

E).
7: Find spike location n = argmax

n∈Ω
{|r[n]|}.

8: Update Ω← Ω/{n}.
9: Store spike xp[n] = r[n].

10: Remove spike y
′

E = yE − (ΓΛ)−1xp.
11: Denoise y

′

E = CadzowQSVD(y
′

E , K̃qKq).
12: Estimate xq = Prony(y

′

E , K̃q).
13: end for
14: Retain BKq atoms with largest amplitudes on xq .
15: Obtain x̃ with least squares x̃ = argmin

x
||y − Dx||22,

where x is none-zero at the corresponding selected Kp

spike locations on xp and BKq atoms xq .

denoising removes noise as well as part of the exponential en-
ergy. This energy leakage will be magnified by the diagonal
matrix ΓΛ and affects the spikes estimation. Prony’s method
is applied to measure the exponential frequencies and the am-
plitudes of the exponentials are recovered with least squares.
A subspace swap [20] would happen when noise level is high.
To increase the robustness, Cadzow denoising finds a rank K̃q

Toeplitz matrix (with K̃q > BKq) rather than a rank BKq .
And, assuming that the power of the spikes is larger than that
of noise and we have a good approximation of the exponen-
tials, the spike locations can be estimated from the residual
signal between the observation and the recovered exponen-
tials. The spikes are iteratively removed from the observation
and estimated from the residual signal which should be re-
weighted with ΓΛ. With the obtained Kp spikes and BKq

exponential frequencies, the sparse signal is recovered using
least squares. The algorithm for noisy signal recovery is sum-
marized in Algorithm 1.

In Cadzow denoising, a Toeplitz matrix S̃ = S + E
is built from noisy observations where S is the desired
structured low rank matrix and E corresponds to the noise
(∆ΓΛ)−1V Hε. As discussed above, the coloured noise
leads to RE := E[EHE] 6= aI. The pre-whiten method
used in [21, 22] is applied to enhance the algorithm’s robust-
ness to noise. The pre-whitening is realized by replacing the
truncated SVD with the truncated quotient singular value de-
composition (QSVD) of the pair (S̃ ,W−1

E ) during Cadzow
denoising where WE := R

†/2
E . This pre-whitening approach

leads to more accurate results compared with multiplying
directly S̃ with pre-whiten matrix WE.
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(a) ProSparse (b) Basis Pursuit

(c) ProSparse (d) Basis Pursuit

Fig. 1: Probability of success for ProSparse extension and Basis
Pursuit for N = 128 (white corresponds to a high probability of
signal recovery, and black corresponds to a low probability). In case
one (results shown in (a) and (b)), the Vandermonde-like matrix V H

is set to be the transpose of the discrete Fourier matrix FH and the
diagonal values of Λ are non-zero and drawn from a normal distri-
butionN (0, 1) with zero mean and unit variance. In the second case
(results shown in ((c) and (d)), the Vandermonde-like matrix is the
same as in case one, while the circulant matrix is obtained by per-
forming circulant shifts of the first row which is a Gaussian signal
with variance σ2 = 8.

4. SIMULATION RESULTS

For noiseless scenarios, Monte Carlo simulations have been
applied to measure the probability of success for the ProSparse
algorithm and compared against BP as shown in Figure 1.
The Vandermonde-like matrix V H was selected as FH .
Thus, the dictionary [V ,V ΛV H ] is the union of the Fourier
basis and a circulant matrix which is defined either using a
random diagonal matrix Λ or by defining its first row and
then computing its circulant shifts. For each sparsity level
(Kp,Kq), 100 sparse vectors have been randomly generated
whose non-zero amplitudes are independently drawn from a
normal distribution N (0, 1). If the diagonal matrix is ran-
domly generated, BP outperforms ProSparse extension in the
region with similar Kp and Kq sparsity level. In the second
case, ProSparse achieves high probability of exact recovery
within the determined bound, while BP performs poorly. The
reason is that BP is sensitive to the mutual coherence of the
dictionary while ProSparse is not.

For noisy scenarios, our proposed ProSparse Denoise Ex-
tension (PSDNE) algorithm has been compared with state-of-
the-art algorithms including BPDN, OMP, and SP. We applied
CVX package for BPDN realization; OMP has been imple-
mented and the source code of SP was downloaded from the
authors’ website. We consider a difficult setting where the
dictionary is the union of Fourier base F and a circulant ma-

(a) SNR = 15 dB, bias = 50%. (b) SNR = 10 dB, bias = 50%.

(c) SNR = 15 dB, bias = 25%. (d) SNR = 10 dB, bias = 25%.

Fig. 2: Probability of support retrieval for union of Fourier basis and
a circulant matrix, each of size N ×N with N = 256. The sparsity
(Kp,Kq) is specified as Kp = bias ·K and Kq = (1− bias) ·K.
100 realizations per sparsity level are generated.

trix C. The circulant matrix is defined as C = G+ I so that
the diagonal matrix does not have zero diagonal values where
G is a Gaussian circulant matrix with variance σ2 = 8, and I
is an identity matrix. The non-zero amplitudes are drawn from
N (1, 0.12) for real and imaginary parts. Figure 2 shows the
probability of support retrieval for all algorithms in 4 different
scenarios where the SNR is 15 dB and 10 dB, and the bias (i.e.
the ratio of Kp/Kq) is 50% and 25%, respectively. From the
simulation results, PSDNE algorithm outperforms other state-
of-the-art algorithms in most cases and its probability of ex-
act support recovery gradually drops when K grows. BPDN
method provides overall the second best performance. OMP
method works at low sparsity level and experiences a sudden
drop when K is higher than 4. SP method only performs well
at higher SNR.

5. CONCLUSIONS

We extended the ProSparse framework for sparse recov-
ery in both noiseless and noisy scenarios. The generalized
ProSparse algorithm can work with a broader class of dic-
tionaries with which the observed signal can be factorized
as the sum of exponentials and spikes. In the noiseless case,
the exponential frequencies are estimated from a retrieved
clean segment using Prony’s method. The spikes can further
be recovered from the residual signal. In the noisy case, the
proposed ProSparse Denoise Extension algorithm handles the
coloured noise with the Cadzow denoising based on QSVD.
In general, the ProSparse extension algorithm outperforms
state-of-the-art sparse recovery algorithms in reconstruction
accuracy as the structure of the dictionary has been fully
explored.

3822



6. REFERENCES
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