
PHASELESS SUPER-RESOLUTION IN THE CONTINUOUS DOMAIN

Myung Cho1, Christos Thrampoulidis2, Weiyu Xu1, and Babak Hassibi2

1 Dept. of ECE, University of Iowa, Iowa City, IA, 52242
2 Dept. of EE, California Institute of Technology, Pasadena, CA, 91125

ABSTRACT

Phaseless super-resolution refers to the problem of super-
resolving a signal from only its low-frequency Fourier mag-
nitude measurements. In this paper, we consider the phaseless
super-resolution problem of recovering a sum of sparse Dirac
delta functions which can be located anywhere in the con-
tinuous time-domain. For such signals in the continuous do-
main, we propose a novel Semidefinite Programming (SDP)
based signal recovery method to achieve the phaseless super-
resolution. This work extends the recent work of Jaganathan
et al. [1], which considered phaseless super-resolution for
discrete signals on the grid.

Index Terms— super-resolution, microscopy, phaseless,
continuous domain, atomic norm

1. INTRODUCTION

In engineering and science, improving the accuracy and
precision of measurement tools, such as microscopy, X-ray
crystallography and MRI, is of great interest. However, due
to the physical limitations in measurement tools, sometimes
we can only indirectly or partially observe a signal of in-
terest, e.g., obtaining only low-frequency information, only
low-resolution image, or only the magnitude of a signal. The
microscope is a good example of a measurement tool hav-
ing such physical limitations ranging from low-frequency
measurements to phaseless measurements [2–6].

To overcome the limitation of low-frequency measure-
ments, researchers have investigated recovering a signal from
only its low-frequency Fourier measurements, and referred to
it as super-resolution. The authors in [7] and [8] proposed
SDP based methods for the recovery of signals in the contin-
uous domain under certain separation conditions, by employ-
ing Total Variation Norm Minimization (TVNM) and Atomic
Norm Minimization (ANM) respectively. The precise SDP
formulation of ANM for d-dimensional signals, d ≥ 2, was
introduced in [9]. Besides, to address the issue of phase-
less measurements, people studied phase retrieval to obtain
phase information from the magnitude measurements of a sig-
nal [10, 11]. The authors in [12] proposed a trace-norm min-
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imization to solve phase retrieval problem with the use of
masks.

Super-resolving a signal from only magnitudes of low-
frequency Fourier measurements is often ill-posed due to lack
of both phase information and high-frequency information;
and hence it is a challenging problem. The authors in [1, 13]
considered the phaseless super-resolution aiming at recov-
ering signals with only low-frequency magnitude measure-
ments. In the noiseless setting, the authors in [13] proposed a
combinatorial algorithm for signal recovery using only low-
frequency Fourier magnitude measurements, but this algo-
rithm requires additional distinguishing conditions on the sig-
nal impulses. In the noisy setting, this combinatorial algo-
rithm suffers from error propagation. Instead of assuming the
distinguishing conditions on signals, the authors in [1] used
masks to obtain different types of magnitude measurements.
The authors provably showed that under appropriate choice
of masks, an SDP formulation can be used to recover time-
domain impulse signals on the discretized grid.

In this paper, we consider super-resolving time-domain
impulse signals located off the grid from only low-frequency
Fourier magnitude measurements. To tackle the continuous
domain, we propose a novel SDP formulation, employing
ANM to recover signals from Fourier magnitude measure-
ments. For example, our approach applies to the magnitude
measurements used in [1, 12]. In numerical experiments, we
show the successful signal recovery in the continuous domain
from only low-frequency magnitude measurements. Also,
we compare our method to a simple combining algorithm
performing phase retrieval followed by ANM. Our method
shows better recovery performance than the simple algorithm.

Notations: In this paper, we denote the set of complex
numbers as C. We reserve calligraphic uppercase letters for
index sets, e.g.,N . We use ∣N ∣ as the cardinality of the index
set N . We use the superscripts ∗, T , and H to denote con-
jugate, transpose, and conjugate transpose respectively. We
reserve i for the imaginary number, i.e., i2 = −1. We denote
a time-domain signal as a lowercase letter, and its frequency-
domain signal as its uppercase letter. To denote a ground turth
signal, we use the superscript o, e.g., xo. For the index of a
vector and a matrix, we start with the index 0; hence, we de-
note the first element of the vector X as X0, and the top-left
element of a matrix Q as Q0,0.
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2. PROBLEM FORMULATION AND BACKGROUND

Let xo(t) be a sum of Dirac functions expressed as follows:

xo(t) =
k

∑
j=1

cojδ(t − toj), (2.1)

where δ(t) is the Dirac delta function, coj ≠ 0 ∈ C, and toj ∈
[0,1). Its Fourier transform is given by:

Xo
f =

k

∑
j=1

coje
−i2πftoj =

k

∑
j=1
∣coj ∣a(toj , ϕo

j)f , f ∈ N , (2.2)

where f ∈ N = {0,1, ..., n − 1}, a(toj , ϕo
j) ∈ C∣N ∣ is an

atom vector, with the f -th element given by a(toj , ϕo
j)f =

e−i(2πft
o
j−ϕ

o
j ). Simply, Xo = V oco, where Xo ∈ Cn, V o =

[a(to1,0), ..., a(tok,0)], and co = [∣co1∣eiϕ
o
1 , ..., ∣cok ∣eiϕ

o
k]T . We

also define the minimum separation of xo(t), denoted by △t,
as the closest distance between any two different time value
toj ’s in cyclic manner [7, 8], i.e.,

∆t = min
to
i
,to

j
∈[0,1), i≠j

∣toi − toj ∣. (2.3)

The goal here is to find xo(t) from the low-frequency
Fourier magnitude measurements. We state the phaseless
super-resolution problem with masks as follows:

Find x(t)

subject to Z[r, l] = ∣∫
1

0
Dr(t)

k

∑
j=1

cojδ(t − toj)e−i2πltdt∣, (2.4)

for −R ≤ r ≤ R and l ∈ N ,

where Z[r, l] is the l-th frequency magnitude obtained by us-
ing the r-th mask function Dr(t). Depending on the mask
function Dr(t), one can have different types of magnitude in-
formation. For example, if we choose 1 + e−i2πt for Dr(t),
we have ∣Xo

l +Xo
l+1∣, l ∈ N .

In [1], Jaganathan et al. consider the case when the signal
xo(t) is located on the grid, i.e., toj ∈ {0,1,2, ....n − 1}. By
n-point DFT, (2.4) is equivalent to

Find x

subject to Z[r, l] = ∣⟨fl,Drx⟩∣, (2.5)

for −R ≤ r ≤ R and l ∈ N ,

where x ∈ Cn is a complex valued k-sparse vector, Dr ∈ Cn×n

is a diagonal matrix, and fl is the conjugate of the l-th col-
umn of the n point DFT matrix. The authors in [1] proposed
the following semidefinite relaxation-based program for the
phaseless super-resolution in the discrete domain by denoting
Y = xxH and relaxing the rank-1 constraint on Y :

minimize
Y

∣∣Y ∣∣1 + λTr(Y )

subject to Z[r, l]2 = Tr(DH
r flf

H
l DrY ), (2.6)

for −R ≤ r ≤ R, l ∈ N , and Y ⪰ 0,

for some λ > 0.
This paper makes no assumption of toj being on the grid.

In the next section, we propose an ANM based semidefinite
relaxation of (2.4) to deal with impulse functions off the grid.

3. PHASELESS SUPER-RESOLUTION IN THE
CONTINUOUS DOMAIN

We define the atomic norm of a vector X ∈ C∣N ∣ as follows:

∣∣X ∣∣A = inf{∑
j

∣cj ∣ ∶Xl =∑
j

∣cj ∣a(tj , ϕj)l, tj∈[0,1),
ϕj∈[0,2π)}. (3.1)

We have the following new proposition for the atomic norm:

Proposition 3.1. For any X ∈ C∣N ∣, N = {0,1, ..., n − 1},

∣∣X ∣∣2A = inf
u,s
{ 1

∣N ∣
sTr(Toep(u)) ∶ [Toep(u) X

XH s
] ⪰ 0}, (3.2)

where Tr(⋅) is the trace operator, and Toep(u) is the Toeplitz
matrix whose first column is u = [u0, u1, ..., un−1]T . More-
over, suppose after the Vandermonde decomposition [14–16],
Toep(u) = V DV H , where V = [a(t1,0), ..., a(tr,0)] and D
is a positive diagonal matrix. Then, there exists a vector c
such that X = V c and ∑j ∣cj ∣ = ∣∣X ∣∣A.

Proposition 3.1 is similar to Proposition II.1 in [8]; how-
ever, Proposition 3.1 considers the trace of sToep(u) instead
of the sum of trace of Toep(u) and s. Proposition 3.1 is es-
sential to derive our new SDP formulation handling phaseless
measurements. For readability, we place the proof of Propo-
sition 3.1 in Appendix.

Motivated by Proposition 3.1, we propose the following
squared atomic norm minimization for the phaseless super-
resolution in the continuous domain, simply phaseless ANM:

minimize
X

∣∣X ∣∣2A

subject to ar(X) = br, r = 1,2, ..., q, (3.3)

where q is the total number of magnitude measurements,
ar(X) is the magnitude mapping function, ∣⟨ar,X⟩∣, ar ∈
C∣N ∣, and br’s are magnitude measurement results.

From Proposition 3.1, we can change (3.3) to

minimize
u,X,s

1

∣N ∣
sTr(Toep(u))

subject to U ≜ [Toep(u) X

XH s
] ⪰ 0,

ar(X) = br, r = 1,2, ..., q, (3.4)

where u,X ∈ C∣N ∣ and s ∈ C. From the positive semidefinite-
ness of U , s ≥ 0, and Toep(u) ⪰ 0. Besides, if Xj ≠ 0, j ∈ N ,
then s ≠ 0 from the non-negativeness of all principal minors
of U [17]. However, because of the magnitude constraints,
(3.4) is a non-convex program.
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By the Schur complement lemma [18], U ⪰ 0 implies
sToep(u) −XXH ⪰ 0. Since sToep(u) = Toep(su), by defin-
ing Q = XXH and u′ = su, and getting rid of the rank con-
straint on Q, we have the following SDP relaxation for the
phaseless ANM:

minimize
Q⪰0,u′

1

∣N ∣
Tr(Toep(u′))

subject to Toep(u′) −Q ⪰ 0,

Ar(Q) = b2r, r = 1,2, ..., q, (3.5)

where Ar(Q) is a mapping function, Tr(ArQ). Here, Ar =
ara

H
r .
After solving (3.5), we can find the optimal Q̂ and op-

timal Toep(û). Our analysis of (3.5) in the following sec-
tion shows that under certain conditions, Q̂ = XoXoH . We
can recover Xo up to global phase by the eigenvalue decom-
position of Q̂. More importantly, because of the structure
of Toep(û) = V oDV oH for some diagonal matrix D, we
can apply any parameter estimation method such as Prony’s
method [19–21] or a matrix pencil method [22, 23] to find the
time location toj ’s.

4. PERFORMANCE ANALYSIS

We first consider the analysis of (3.5) given a rank-1 matrix Q.
And then, we provide the analysis of (3.5). Finally, we look
at one scenario having magnitude measurements from a set of
masks, in which (3.5) provides the desired signal recovery.

Theorem 4.1. For a given rank-1 positive semidefinite matrix
Q = XXH , X ∈ C∣N ∣, the following optimization problem
provides the squared atomic norm of X , i.e., ∣∣X ∣∣2A:

minimize
u

1

∣N ∣
Tr(Toep(u))

subject to Toep(u) −Q ⪰ 0. (4.1)

Proof. We can prove it by using Proposition 3.1. Defining
u = u′s, where s > 0 is a scalar. Then we can re-state the con-
straint as Toep(u′) − 1

s
XXH ⪰ 0. By the Schur complement

lemma, we have the optimization problem in Proposition 3.1.
Therefore, from Proposition 3.1, the optimal value of (4.1) is
the same as ∣∣X ∣∣2A.

Corollary 4.2. If (3.5) gives a rank-1 solution to Q, then (3.5)
minimizes the squared atomic norm of X among all vectors
X satisfying the given constraints ar(X) = br, r = 1,2, ..., q.

Proof. From Theorem 4.1, (3.5) provides the minimum
squared atomic norm of X among all vectors X satisfying
the constraints ar(X) = br, r = 1,2, ..., q.

Let us consider the case when we have low-frequency
Fourier magnitude measurements from a set of masks. The
main difference between [7, 8] and our setting is that we have
only magnitude measurements instead of measurements of-
fering both phases and magnitudes.

Theorem 4.3. Given the magnitude measurements ∣Xo
j ∣,

∣Xo
j + Xo

j+1∣, and ∣Xo
j − iXo

j+1∣, j ∈ N = {0,1, ..., n − 1},
(3.5) provides the unique solution Q = XoXoH , and xo(t) is
uniquely obtained up to global phase if the following condi-
tions hold: Xj ≠ 0, ∀j ∈ N , and ∆t ≥ 4/∣N ∣.

Proof. Given magnitude data, ∣Xo
j ∣2, ∣Xo

j+1∣2, ∣Xo
j +Xo

j+1∣2,
and ∣Xo

j − iXo
j+1∣2, we can find Qj,j , Qj+1,j+1, Qj,j+1 and

Qj+1,j , which are the elements of the diagonal, sub-diagonal,
and super-diagonal of the matrix Q, by simply solving linear
equations on Q together. From Lemma 6.1 in Appendix 6.2,
we can uniquely recover Q = XoXoH and Xo up to global
phase. According to Proposition 3.1 and Theorem 4.1, (3.5)
with Xo is essentially the same as the optimization problem
dealing with the standard ANM [8] or TVNM [7]. Therefore,
(3.5) provides unique xo(t) up to global phase if the separa-
tion condition holds, i.e., ∆t ≥ 4/∣N ∣.

5. NUMERICAL EXPERIMENTS

We compare our phaseless ANM against the standard ANM
[8] using measurements offering both phases and magnitudes,
as well as against a simple algorithm which first performs the
phase retrieval [12] and then applies the standard ANM [8] to
recover the impulse functions from the recovered signal using
the phase retrieval. We use CVX [24] to solve (3.5).

Fig. 1 (a) and (b) show the probability of successful re-
covery from the standard ANM and the phaseless ANM re-
spectively. We conducted 50 trials for each parameter set-
ting and measured the success rate. At each trial, we chose
one time impulse to1 uniformly at random in [0,1), and an-
other time impulse to2 by adding the separation ∆t to to1 in the
cyclic manner. We sampled the real part and imaginary part
of time coefficients coj ’s uniformly at random in (0,1). We
consider low frequencies, i.e., M = {0,1, ...,m − 1}, where
m < n, M ⊆ N . The x-axis represents the separation con-
dition ∆t varied from 1/n to 11/n, and y-axis is the number
of low-frequency Fourier measurements m, varied from 2 to
30. For a set of masks in the phaseless ANM, we use the
same masks as those of Theorem 4.3 over the index set M.
Hence, the number of magnitude measurements is 3m−2. We
evaluated the recovery performance for the signal dimension
n = 32. We calculated the Euclidean distance between the
estimated and true time locations. If the distance is less than
10−3, then we consider the estimation successful. Numerical
experiments show that our phaseless ANM can find the exact
time locations in the continuous domain with the same per-
formance as the standard ANM. For large k, e.g., k = 10, our
method also provides the same performance as the standard
ANM. We omit the simulation results in this paper due to the
space limitation.

One can think of a simple method conducting the phase
retrieval first, and then doing the standard ANM. To compare
our algorithm with this simple method, we further carried out
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Fig. 1. The probability P of successful recovery by varying the
separation condition ∆t and the number of measurements when n =
32. (a) Standard ANM. (b) Phaseless ANM

Fig. 2. The probability P of successful recovery by varying the
number of magnitude measurements q and sparsity k when n = 32.
(a) Phase retrieval and then standard ANM (b) Phaseless ANM

numerical experiments by varying the number of magnitude
measurements q and the number of sparsity k in (2.1). In this
simulation, instead of using a set of masks used in Theorem
4.3, we randomly chose a vector ar for each magnitude mea-
surement in (3.3). Fig. 2 (a) and (b) show the probability of
successful recovery from the simple combining algorithm and
the phaseless ANM respectively. The x-axis is the number of
magnitude measurements q, and y-axis is the number of spar-
sity k. With randomly chosen magnitude measurements, our
method outperforms the simple combining algorithm.

6. APPENDIX

6.1. Proof of Proposition 3.1

Proof. Let us denote the optimal value of the right hand side
of (3.2) by SDP(X). In order to show ∣∣X ∣∣2A = SDP(X), we
will show that (1) ∣∣X ∣∣2A ≥ SDP(X) and (2) ∣∣X ∣∣2A ≤ SDP(X).

The proof of (1) is easily shown by considering a feasible
solution of SDP(X). For X = ∑j ∣cj ∣a(tj , ϕj), by choosing a
feasible solution, Toep(u) = ∑j ∣cj ∣a(tj , ϕj)a(tj , ϕj)H , and
s = ∑j ∣cj ∣, we have

[Toep(u) X

XH s
] =∑

j

∣cj ∣ [
a(tj , ϕj)

1
] [a(tj , ϕj)

1
]
H

⪰ 0.

For this feasible solution, 1
∣N ∣sTr(Toep(u)) = (∑j ∣cj ∣)2,

which is ∣∣X ∣∣2A. Thus, SDP(X) ≤ ∣∣X ∣∣2A.
For the proof of (2), we will show that for any u, s, and

X , 1
∣N ∣sTr(Toep(u)) ≥ ∣∣X ∣∣2A. Suppose for some u, s ≠ 0, and

X , the matrix U in (3.4) is positive semidefinite. From the
positive semidefinite condition, we have Toep(u) ⪰ 0 and s >
0. From the Vandermonde decomposition [14–16], for any
positive semidefinite Toep(u), we have Toep(u) = V DV H ,
where V = [a(t1,0) a(t2,0), ...a(tr,0)], and D is a diag-
onal matrix having dj as its j-th diagonal element. Since
V DV H = ∑r

j=1 dja(tj ,0)a(tj ,0)H and ∣∣a(tj ,0)∣∣22 = ∣N ∣,
we have 1

∣N ∣Tr(Toep(u)) = Tr(D). Also, from the Vander-
monde decomposition and U ⪰ 0, X is in the range space
of V ; in fact, if X is not in the range of V , we can always
find a vector z such that zHUz < 0. Therefore, X = V w =
∑r

j=1wja(tj ,0), where w ∈ Cr. By the Schur complement
lemma [18], U in (3.4) is expressed as follows:

V DV H − 1

s
V wwHV H ⪰ 0. (6.1)

It is noteworthy that we can always find a vector q such that
V Hq = sign(w), where sign(w)Hw = ∑r

j=1 ∣wj ∣, by choos-
ing q = V (V HV )−1sign(w). This is because V H has full
row rank. By choosing q such that V Hq = sign(w), we have

Tr(D) = qHV DV Hq ≥ 1

s
qHV wwHV Hq = 1

s
(∑

j

∣wj ∣)2,

where the inequality is from (6.1). Therefore, we have

1

∣N ∣
sTr(Toep(u)) = sTr(D) ≥ (∑

j

∣wj ∣)2 = ∣∣X ∣∣2A.

If s = 0, from the sufficient and necessary condition for
the positive semidefiniteness of a Hermitian matrix, all of U ’s
principal minors need to be non-negative [17]. Thus, Xj = 0,
∀j ∈N . In this case, Proposition 3.1 still holds.

6.2. Lemma for the positive semidefinite matrix Q

Lemma 6.1. Let Q ∈ C∣N ∣×∣N ∣, and Xo ∈ C∣N ∣. Suppose (1)
Q ⪰ 0, (2) Qj,j = Qo

j,j , Qj,j+1 = Qo
j,j+1, and Qj+1,j = Qo

j+1,j ,
j ∈ N = {0,1, ..., n − 1}, where Qo = XoXoH , (3) Xo

j ≠ 0,
∀j ∈N . Then, Q is uniquely determined as Q =XoXoH .

Proof. From the fact that a Hermitian matrix is positive
semidefinite if and only if all of its principal minors are non-
negative [17], all of Q’s principal minors are required to be
non-negative. Let us prove our lemma by induction. When
∣N ∣ = 3, the determinant of Q is −∣Xo

1Q0,2 − Xo
0X

o
1X

o
2
∗∣2,

where Q0,2 is unknown. To be −∣Xo
1Q0,2 −Xo

0X
o
1X

o
2
∗∣2 ≥ 0,

Xo
1Q0,2 −Xo

0X
o
1X

o
2
∗ = 0. Since Xo

1 ≠ 0, Q0,2 is determined
uniquely as Xo

0X
o
2
∗. When ∣N ∣ = 4, we can consider the top-

left 3×3 submatrix of Q and the bottom-right 3×3 submatrix
of Q to determine Q0,2 and Q1,3 respectively. And then, we
can deal with 3 × 3 principal submatrix of Q having Q0,4 to
determine Q0,4. In the similar way, when ∣N ∣ = n, we can
uniquely determine every unknown variables in Q. We omit
the detailed explanation due to the space limitation.

3817



7. REFERENCES

[1] K. Jaganathan, J. Saunderson, M. Fazei, Y. C. Eldar, and
B. Hassibi, “Phaseless super-resolution using masks,” in
Proceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2016, pp. 4039–
4043.

[2] S. Brenner and R. W. Horne, “A negative staining method for
high resolution electron microscopy of viruses,” Biochimica et
biophysica acta, vol. 34, pp. 103–110, 1959.

[3] H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Func-
tional photoacoustic microscopy for high-resolution and non-
invasive in vivo imaging,” Nature biotechnology, vol. 24, no.
7, pp. 848–851, 2006.

[4] H. Benveniste and S. Blackband, “MR microscopy and high
resolution small animal MRI: applications in neuroscience re-
search,” Progress in neurobiology, vol. 67, no. 5, pp. 393–420,
2002.

[5] E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E.
Brus, T. F. Heinz, M. S. Hybertsen, and G. W. Flynn, “High-
resolution scanning tunneling microscopy imaging of meso-
scopic graphene sheets on an insulating surface,” Proceed-
ings of the National Academy of Sciences, vol. 104, no. 22,
pp. 9209–9212, 2007.

[6] B. Huang, M. Bates, and X. Zhuang, “Super resolution fluo-
rescence microscopy,” Annual review of biochemistry, vol. 78,
pp. 993, 2009.

[7] E. J. Candès and C. Fernandez-Granda, “Towards a mathemat-
ical theory of super-resolution,” Communications on Pure and
Applied Mathematics, vol. 67, no. 6, pp. 906–956, 2014.

[8] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed
sensing off the grid,” IEEE Transactions on Information The-
ory, vol. 59, no. 11, pp. 7465–7490, 2013.

[9] W. Xu, J.-F. Cai, K. V. Mishra, M. Cho, and A. Kruger, “Pre-
cise semidefinite programming formulation of atomic norm
minimization for recovering d-dimensional (d ≥ 2) off-the-grid
frequencies,” in Proceedings of IEEE Information Theory and
Applications Workshop (ITA), 2014, pp. 1–4.

[10] J. R. Fienup, “Phase retrieval algorithms: a comparison,” Ap-
plied optics, vol. 21, no. 15, pp. 2758–2769, 1982.

[11] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for
the determination of phase from image and diffraction plane
pictures,” Optik, vol. 35, no. 2, pp. 237–246, 1972.

[12] E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski,
“Phase retrieval via matrix completion,” SIAM review, vol. 57,
no. 2, pp. 225–251, 2015.

[13] Y. Chen, Y. C. Eldar, and A. J. Goldsmith, “An algorithm for
exact super-resolution and phase retrieval,” in Proceedings of
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2014, pp. 754–758.
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