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ABSTRACT
Could bandwidth—one of the most classic concepts in signal
processing—have a new purpose? In this paper, we investi-
gate the feasibility of using bandwidth to infer shape from a
single image. As a first analysis, we limit our attention to
orthographic projection and assume a 2-D world.

We show that, under certain conditions, a single image of
a surface, painted with a bandlimited texture, is enough to de-
duce the surface up to an equivalence class. This equivalence
class is unavoidable, since it stems from surface transforma-
tions that are invisible to orthographic projections.

A proof of concept algorithm is presented and tested with
both a simulation and a simple practical experiment.

Index Terms— Shape estimation, bandwidth, warped
bandlimited signals.

1. INTRODUCTION

A surface, with a bandlimited texture painted on it, appears
sharper when viewed from a small grazing angle. In other
words, we observe minimum local bandwidth when the sur-
face is fronto-parallel to the viewing plane. Figure 1 demon-
strates this effect by showing a rendering of a cube that has
the same bandlimited texture painted on each side.

In this paper, we exploit this fact to develop an algorithm
that approximates the shape of a painted surface, from a sin-
gle image. As a first analysis, we limit our attention to the
2-D orthogonal projection case; i.e., our world is 2-D, there-
fore by surface we mean a curve in R2, and we observe an
orthographic projection. With these assumptions, as depicted
in Fig. 2, the camera observes a warped version of the texture
painted on the surface. Therefore, if we paint the surface with
a 1-D bandlimited texture, we observe a warped-bandlimited
signal—a familiar beast to the signal processing savant (see
for instance [1, 2, 3, 4]).

In the theory of warped-bandlimited signals, there is a
conjecture [5, 6], which, if true, would lead to an important
uniqueness result. In this paper, we use these ideas to develop
a uniqueness result for the shape from bandwidth problem.
More precisely, we show that, if the arc-length of the surface
is equal to an entire function over a non-zero interval and if
the surface has a stationary point in the field of view, there is a

Fig. 1: An image of bandlimited white noise “painted” onto
a cube. Notice how the front face, which is closer to fronto-
parallel to the image plane, has lower local bandwidth; i.e., it
is less sharp. Similarly, the top face is less sharp than the side.

unique warping and bandlimited texture that could have gen-
erated the observation. Furthermore, there is a unique equiva-
lence class of surfaces (to be defined) that corresponds to this
warping.

As well as this unicity result, we develop a very simple
algorithm to approximate this equivalence class of surfaces,
which we verify with a simple practical experiment. The main
aim of this paper, however, is not to provide a practical algo-
rithm; instead, we hope to show, for the first time, that band-
width could be used to infer shape.

Of course, there are many existing cues used to sense
shape and depth, based on both single and multiple images
[7, 8, 9, 10]. Of this multitude of techniques, shape from
shading and shape from texture are the most similar. How-
ever, the proposed technique is fundamentally different, since
it relies on bandwidth, rather than lighting information or the
orientation of texture elements, to infer surface normals.

2. SURFACE ESTIMATION

We assume the setup depicted in Fig. 2, as well as Lamber-
tian reflection, and consider the process of estimating the sur-
face, from the observed signal. The process can be broken
down into two steps: given the observed signal, estimating
the warping and, given the warping, estimating the surface1.

1We use the terms warping and arc-length interchangeable, since it is the
arc-length, γ(x), that warps the texture.
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Fig. 2: Problem setup. A 1-D surface (i.e. curve) is viewed by an orthographic camera: (a) depicts a top-down view of the
surface, z(x), its arc-length, γ(x), and the camera’s image plane, z = f for 0 ≤ x ≤ xmax; (b) depicts the bandlimited texture,
s(γ), painted onto the surface, and the warped-bandlimited signal observed on the image plane, u(x) = s(γ(x)). In (b), one
can observe how the local bandwidth of u = s ◦ γ depends on the slope of the surface.

We start by showing that the latter problem of estimating
the surface from the warping leads to an equivalence class of
surface reconstructions; i.e., given a particular warping, there
is no way to distinguish between a family of surfaces. Any
reconstruction is thus up to this equivalence class.

Then, for the problem of estimating the warping from the
observed signal, we develop a uniqueness result and a simple
recovery algorithm.

2.1. Estimating the surface from the warping

To start with, suppose we had access to the warping γ(x).
Using the properties of arc-length, we could easily calculate
the absolute value of the gradient of the surface:∣∣∣∣dzdx

∣∣∣∣ =

√(
dγ

dx

)2

− 1. (1)

Reconstructing a 2-D surface from its normals is a key step
in shape from shading, shape from texture and photometric
stereo. Many successful techniques have been developed
for this task: [11, 12], which typically enforce integrability.
However, in our simplified setup, we have the 1-D version of
this problem, where loss of integrability is not an issue. We
can thus utilise the following simple estimate of the surface:

ẑ(x) =

∫ x

0

∣∣∣∣dzdx̄
∣∣∣∣ dx̄.

From this reconstruction formula, we see that there are a
number of ambiguities associated with reconstructing a sur-
face from the warping. Let’s define the equivalence relation
∼ such that z1 ∼ z2 if and only if∫ x

0

∣∣∣∣dz1dx̄
∣∣∣∣ dx̄ =

∫ x

0

∣∣∣∣dz2dx̄
∣∣∣∣ dx̄.

This equivalence class stems from two types of transfor-
mation, which when applied to the surface, do not affect the
observed image: translations in the z-direction and sign flips

of the gradient. Figures 3a-c show three surfaces, belonging
to the same equivalence class2. The surface z2 is continu-
ous and differentiable: it has been obtained, from z1, by a
global translation in the z-direction and a single sign flip of
the gradient at its stationary point. The surface z3 is more
complex: in addition to a global translation, there is a second
translation, leading to the discontinuity, and a single sign flip
of the gradient, which has created another non-differentiable
point. However, the absolute value of its derivative, at all
points where it exists, is the same as z1’s.

In what follows, we restrict the surface to be differen-
tiable, so its derivative is continuous. In this case, we know
that sign flips of the surface can only occur at its stationary
points and there can only be a single global offset. If a warp-
ing leads to a |dz/dx|, which has N zeros, we can find 2N+1

possible surfaces, corresponding to each possible sign-flip.
One of these is the true surface, up to a global offset.

2.2. Estimating the warping

2.3. Uniqueness

The observed signal u belongs to the space of warped ban-
dlimited signals, which can be defined as B◦Γ = {s◦γ : s ∈
B, γ ∈ Γ}; here, B is the space of bandlimited functions and
Γ is the space of real-valued monotonic functions.

In [5], Clark conjectured that the only way a bandlimited
signal could be warped into another bandlimited signal was if
the warping was affine; i.e., if γ(x) = ax + b. If true, this
conjecture would lead to an important uniqueness result: let
B1 be the space of unit bandwidth signals; then, given a signal
u ∈ B ◦ Γ, Clark’s conjecture would imply that there could
only be a unique pair, s ∈ B1 and γ ∈ Γ, such that u = s ◦ γ.
Xia and Zhang proved a restricted version of the conjecture,
in the case that the warping is entire [13]. Later, Azizi et al.
used a peculiar counter-example, constructed by Y. Meyer, to
show that the conjecture is, in fact, false [14]; however, in the

2For the time being, we neglect the effect of non-differentiable points.
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Fig. 3: Surface estimation. (a) - (c) Three surfaces with the same absolute value of their derivative (at all points where it exists).
(d) The absolute value of the derivative of these surfaces. (e) A spectogram of the observed signal when z1 is painted with
bandlimited white noise (log magnitude). 99.9% of the energy lies at those frequencies below the white line. (f) An estimate of
the local bandwidth of the observed signal. This is obtained by convolving the white line in (e) with the spectogram’s window.
(g) An approximation of the absolute value of the derivative of the surface. (h) The final surface estimation.

same paper, it is shown that no non-affine warping can warp
all bandlimited signals into bandlimited signals.

Therefore, although the conjecture’s uniqueness guaran-
tee has been lost, we are left with two glimmers of light: from
[13], we can obtain the uniqueness guarantee by further re-
stricting the warping to be entire and, even if we do not fur-
ther restrict the warping, in practice, we have never recovered
the wrong s, γ pair3. Therefore, in all practical cases we be-
lieve that a warped bandlimited signal corresponds to a single
warping, up to a scale factor. Furthermore, if we can cor-
rect for this unknown scale, it corresponds to a single element
from the previously defined equivalence class of surfaces. As
a direct extension of Xia and Zhang’s result, we present the
following lemma:

Lemma 1 (Unique surface reconstruction). Assume a non-
constant texture s ∈ B is painted on a surface z, with a sta-
tionary point in the field of view (0 ≤ x ≤ xmax, xmax > 0).
Further, assume that γ, the arc-length of z, is equal to an en-
tire function for a non-zero interval in the field of view. The
signal u(x) = s(γ(x)) could only have been generated by the
original texture s and arc-length γ. Furthermore, this arc-
length corresponds to a unique element from the previously
defined equivalence class of surfaces.

Proof. LetB 6= 0 be the bandwidth of s. The local bandwidth
of u is greater than or equal to B, with equality at stationary
points of z (i.e. where the surface is fronto-parallel to the
image plane). Since we observe a stationary point, u can be
used to infer B.

3The fact that no non-affine warping can warp all bandlimited signals
into bandlimited signals in some way formalises that non-uniqueness is rare.
Clearly, it would be desirable to understand the measure of these occurrences
to be more precise about the probability of recovery.

Now, since γ is entire, from [13, Theorem 1], u is ban-
dlimited if and only if γ is affine. Now suppose there exists
s1, s2 with bandwidth B and γ1, γ2 ∈ Γ, such that u(x) =
s1(γ1(x)) = s2(γ2(x)). The arc-lengths are montotonic so
their inverses exist. Therefore, s1(x) = s2(γ2(γ−11 (x))) =
s2(γ3(x)), where γ3(x) = γ2(γ−11 (x)). Clearly, γ3 is mono-
tonic and, since the derivative of γ1 is non-zero, it follows
from the Lagrange inversion theorem that γ−11 is analytic;
hence, γ3 equals an entire function on an interval. Therefore,
from [13, Theorem 1], γ3 is affine. However, the only way
an affine function can warp a bandlimited signal into another
bandlimited signal of the same bandwidth is if γ3(x) = x.
Therefore, γ1 = γ2 and s1 = s2.

2.4. Recovery

We now propose a simple algorithm to demonstrate the feasi-
bility of recovering the shape of a surface from its bandwidth.

To estimate the local bandwidth, let us define the follow-
ing approximation of u around an arbitrary point x0:

u(x;x0) := s (γ(x0) + γ′(x0)(x− x0)) .

Furthermore, let us assume that this approximation is good
within a window, w, of x0:

w(x− x0)u(x) ' uw(x;x0) := w(x− x0)u(x;x0).

Taking the Fourier transform yields

Uw(ω;x0) := F [uw(x;x0)] = F [w(x− x0)]∗F [u(x;x0)] ,

where F [w(x− x0)] = W (ω)e−jωx0 and

F [u(x;x0)] =
1

γ′(x0)
S

(
ω

γ′(x0)

)
ejω(γ(x0)/γ

′(x0)−x0).
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Therefore, if u(x) is bandlimited with bandwidth B,
u(x;x0) has bandwidth γ′(x0)B. Furthermore, if the win-
dow has a large enough cutoff frequency, uw(x;x0) has the
same bandwidth. Throughout the paper, we have asserted that
the local bandwidth of the signal is dependant on the slope of
the surface. We now see that, in the 2-D orthographic case,
it is proportional to the derivative of the arc-length, which,
using (1), can easily be converted to the absolute value of the
derivative of the surface.

Algorithm 1 summarises a simple process to estimate the
surface using these ideas and Figs. 3e-3h show a simple re-
construction example. First, as depicted in Fig. 3e, a spec-
trogram of the observed signal is computed, using a single
sample step between adjacent windows, and the bandwidth
of each windowed region is approximated. This local band-
width estimation is convolved with the spectrogram window,
resulting in a local bandwidth estimate, like Fig. 3f. The
reduced signal length is due to this convolution. We would
like to divide the local bandwidth estimate by B, the original
bandwidth of s, to obtain an approximation of the derivative
of the warping. Although this is unknown, we can, like in the
uniqueness result, make the assumption that z has a stationary
point in the field of view. Then, the minimum observed local
bandwidth is equal to the original bandwidth of s and, as de-
picted in Fig. 3g, we can correct to approximate the derivative
of the arc-length. Finally, we can reconstruct the surface, up
to the previously stated equivalence class.

Algorithm 1 Shape from bandwidth

1: Compute the spectrogram of the observed signal u.
2: For each spatial value, compute the local bandwidth

(taken to be the minimum frequency that contains almost
all the energy; e.g., 99% of the energy). Convolve this
estimate with the spectogram window.

3: Approximate dγ/dx, by dividing the local bandwidth es-
timate by the minimum observed bandwidth.

4: Find all local minimum of dγ/dx that are approximately
equal to one. These points are candidates for sign flips.

5: Approximate the absolute value of derivative of the sur-
face as |dz/dx| =

√
(dγ/dx)2 − 1.

6: Reconstruct all surfaces in the equivalence class by inte-
grating |dz/dx|, for each possible sign flip.

3. EXPERIMENTS

As seen in Figs. 3e-3h, Algorithm 1 works for simple syn-
thetic simulations. The main inaccuracies come from the dif-
ficulty of estimating the true bandwidth of the original texture.
This occurs because, in practice, we only have a finite num-
ber of samples around fronto-parallel regions; however, this
could be improved by spatially adapting the window length.

To further test the algorithm, we performed a very simple
practical experiment. We printed and attached bandlimited
white noise to a curved surface and captured a single image

(a)

(b)

(c)

Fig. 4: Practical experiment. (a) An image of bandlimited
white noise “painted” onto a surface. (b) A scanline of the
above image. (c) A top-down view of the experimental setup,
with the estimated surface superimposed on top.

using a Nikon D810 DSLR camera. Figure 4a shows the ac-
quired image and Fig. 4b depicts one scanline of this im-
age, which was input to the algorithm. Figure 4c depicts a
top-down view of the setup with the estimated surface super-
imposed. Since the projection was perspective, an unknown
scale ambiguity is introduced, which we have manually cor-
rected. However, despite this model mismatch and the sim-
plicity of Algorithm 1, the result is surprising accurate.

4. CONCLUSION AND FUTURE WORK

In this paper, we have, for the first time, utilised bandwidth to
retrieve the shape of a painted surface from a single image.

As a first analysis, we only considered the 2D ortho-
graphic case and the extension to 3D and perspective pro-
jection are obvious topics of future work. Moreover, there
are many unanswered theoretical questions. In particular,
we have assumed that we have access to continuous-time
signals and neglected any sampling effects. To be more pre-
cise, we could use the fact that, since the windowed signals,
uw(x;x0), have bandwidth γ′(x0)B, they are completely de-
scribed by 2γ′(x0)B samples. Understanding these types of
sampling effects, will help us adaptively choose the window
size, which is one of many modifications that needs to be
made to develop a more practical reconstruction algorithm.
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