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ABSTRACT

High peak values of transmission signals in wireless communica-
tion systems lead to wasteful energy consumption and degradation
of several transmission performances. We continue the theoretical
contributions made by B. and Farell [1, 2] towards the understand-
ing of peak value reduction, using the strategy known as tone reser-
vation for orthogonal transmission schemes. There it was shown
that for OFDM systems, the combinatorial object called arithmetic
progression plays an important role in setting limitations for the ap-
plicability of the tone reservation method. In this work, we consider
ourselves with the performance of the tone reservation in the prob-
abilistic asymptotic setting. We show in particular that for a suffi-
ciently large numberN of carriers, choosing each element of that set
independently with arbitrary small probability, yields in turn a set of
carriers, for which the PAPR reduction problem is not solvable with
certain explicitly given threshold constants with probability 1 as N
goes to infinity.

Index Terms— Orthogonal Transmission Scheme, OFDM,
PAPR, Tone Reservation, Arithmetic Progressions.

1. INTRODUCTION

The rapid development of technologies and the astronomic growth
in data usage over the past two decades are inter alia the driving
force for the development of flexible, efficient, and reliable trans-
mission technologies for mobile communications networks. The
present and future transmission technologies for mobile communi-
cations can certainly not be imagined without the development of
the so called Orthogonal Frequency Division Multiplexing (OFDM).
OFDM constitutes a transmission scheme with which several data
can be transmitted instantaneously orthogonally in one single shot
within a given time frame by means of the wave functions/carriers
having the form of complex sines. It is certainly one of the most
promising techniques for achieving high-rate data transmissions due
to its high spectral efficiency and inherent robustness toward a mul-
tipath channel [3]. Moreover, it has become an important part and
a foundation of various current, and future standards, such as DSL,
IEEE 802.11, DVB-T, LTE and LTE-advanced/4G [4], and 5G [5, 6].

The high-power amplifier (HPA) in the radio frequency front end
of a base station constitute the part of the transmitter which con-
sumes most of the energy put in that system. The amount of energy
consumed by the HPA is in particular directly related to the so-called
peak-to-average power ratio (PAPR) of the possible input signals.
Moreover, in the case that some of the possible transmit signals pos-
sess high PAPR value, and the input back off of the used HPA, i.e.
the linear range of HPA, is not large enough, such that the magnitude

of the peaks are not contained within it, then non-linear distortion of
the transmit signals occurs [7]. In particular, this results in the al-
teration of the transmit waveforms, in the destruction of the desired
structure–the orthonormality of the wave functions, and correspond-
ingly in the occurrence of negative effects for several transmission
performances (see e.g. [8, 9, 10, 11, 12]). A naive solution to that
problem is to use another amplifier with a higher threshold value.
However, this is practically not the best solution, since an ampli-
fier with a high input back off is expensive, not only to purchase,
but also to maintain. Such HPA would in general have inefficiently
high power consumption. For instance, in a typical OFDM device,
the transmit energy consumption accounts for only 8% of the total
energy consumption at the transmitter, whereas 41% of the energy
is wasted by HPA, and the energy consumption of all other circuit
devices is about 51% [13, 14]. By the similar argumentation (substi-
tute HPA simply by amplifier!), high PAPR value impacts not only
the energy efficiency of the base stations but also of the mobile termi-
nals, which might lead for instance to the reduction the battery life-
time of mobile terminals. Furthermore, the importance of the PAPR
reduction in the mobile communications can be seen by the fact that
a major company set this topic into one of its research strategies [15].

It is well-known, both theoretically and practically, that the
waveforms of orthogonal transmission schemes possess high PAPR
value. This undesired behaviour might be caused by the fact that
such waveforms are generated by a superposition of large numbers
of wave functions. However, the so-called tone reservation method
[16, 17, 18] is without doubt one of the canonical ways to reduce the
PAPR value of a waveform. There, the (indexes of) available wave
functions are separated into two (fixed) subsets. The so-called infor-
mation set I is reserved for those, which carry the information data.
Another set consists of those, whose role is to reduce/compensate
the peak value of all possible waveforms, s.t. it is below a certain
threshold constant CEx ¡ 0, called extension constant. In particular,
this should done, if possible, by choosing the coefficients via convex
optimization. Further, we refer to the applicability of tone reser-
vation method (for a given set of available wave functions) for the
information set I with the threshold constant CEx ¡ 0 simply as the
solvability of the PAPR problem for I with extension constant CEx.
Certainly, there are other methods to reduce the peak value [19, 20].
However, tone reservation is canonical and robust, in the sense that
the only information required on the receiver’s side is the indexes of
the information-bearing coefficients. The auxiliary coefficients may
simply be ignored by the receiver. Therefore, there is no need for
additional overhead in the transmission symbols. Besides, the com-
pensation set can also be used for channel estimation purposes [21].
For more comprehensive and further discussions on those issues,
we recommend the overview article [22], which gives for instance a
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discussion on alternative metrics beyond the PAPR, which are rele-
vant to the behaviour of the energy consumption of an transmission
system, and new mathematical concepts aiming to overcome the
high PAPR behavior of OFDM. We mention that to date there exists
no technique, which chooses, for a given extension constant and for
a given information set, a possibly small compensation set.

In [1, 2], it was shown that the existence of the so-called arith-
metic progressions in the information set gives a limitation to the
solvability of PAPR reduction problem for OFDM. To be more spe-
cific, the existence of a long arithmetic progression implies the non-
solvability of the PAPR reduction problem with small extension con-
stant. The problem of finding an arithmetic progression in a given
set of numbers has been a long lasting problem in mathematics. A
great achievement was made by Szemerédi [23], who shows that
if the considered set is large enough, the existence of an arithmetic
progression of a given length in subsets of the considered set of num-
bers of a given density is ensured. However, Szemerédi Theorem is
unsatisfactory for the asymptotic case, since it merely ensures the
existence of arithmetic progressions of arbitrary length for subsets
of N with positive upper density. A tightening of this statement is
due to Green and Tao [24]. They showed the existence of a subset of
natural numbers possessing the density 0 in N, containing arithmetic
progressions of arbitrary length.

Up to date, no deterministic constructions of information set
I � rN s, whose size is small in contrasts to the set rN s of available
tones (even asymptotically) and which perform badly, in the sense
that the PAPR reduction problem is not solvable for small extension
constants, are known. In several fields, such as information theory
and compressed sensing, probabilistic methods have been applied to
construct relevant objects, such as codes [25] and measurement ma-
trices [26]. In that spirit, we continue the contributions made in [1, 2]
by giving an application of Conlon-Gower’s recent result [27, 28] on
arithmetic progressions for the PAPR reduction problem in the prob-
abilistic asymptotic setting. For a sufficiently large number N of
carriers, it will be shown, that by choosing each element of that set
of carriers independently with arbitrary small probability, there ex-
ists a set of sub-carriers I, for which the PAPR reduction problem is
not solvable for all subsets of I with cardinality at least δ |I|, where
δ ¡ 0 is given, with certain threshold constants, and with probabil-
ity 1 asN goes to infinity. Furthermore, the corresponding threshold
constants is also given explicitly.

2. BASIC NOTIONS

Let K be a discrete set. `2pKq denotes the space of square-summable
sequences indexed by K, equipped with the canonical norm. If
it is clear from the context, we write `2pKq simply by `2. For
p P r1,8q, the space of p-integrable functions on the interval r0, 1s
(resp. r0, 2πs) is denoted by Lppr0, 1sq (resp. Lppr0, 2πsq). The
space of essentially bounded functions on r0, 1s (resp. r0, 2πs) is
denoted by L8pr0, 1sq (resp. L8pr0, 2πsq). For p P r1,8s, in
case that there is no danger of confusions, we denote Lppr0, 1sq and
Lppr0, 2πsq simply by Lp. Lp is equipped with the usual (normal-
ized) norm.

Given a duration Ts ¡ 0 (w.l.o.g. Ts � 1) of a transmit sig-
nal, and given a transmit data takukPK, where K � N, which in our
case constitute simply a sequence in C. The transmit signal of an or-
thogonal transmission scheme has the form sptq � °

kPK akφkptq,
where the collection tφnukPK of wave functions or carriers con-
stitutes an orthonormal system (ONS) in the space of square inte-
grable functions on r0, 1s. The subspace of integrable functions rep-
resentable as linear combinations of tφnukPK is denoted by F1pKq.

We consider in this work mainly OFDM, where tφnukPK is sim-
ply a subcollection of the sine functions tei2πpn�1qp�qunPN, where
enp�q :� ei2πpk�1qp�q.

For N P N, we denote the (N th) Dirichlet kernel by DN ptq �°N
k��N e

ikt, t P R. The Dirichlet kernel is 2π-periodic, and an
even function. By elementary computations, it can also be written
as:

DN ptq � sinpr 2N�1
2 stq

sinp t2 q . (1)

From both representation of DN , it is clear that |DN ptq| ¤ 2N �
1, @t P r0, 1s.

The following mathematical objects constitute central object in
our study:
Definition 1 (Arithmetic Progression, pδ,mq-Szemerédi Set): An
arithmetic progression of length m P N is defined as a subset of
N of the form ta, a� d, a� 2d, . . . , a� pm� 1qdu, with a P Z
and d P N. Given δ ¡ 0 and m P N. A set I � N is called
pδ,mq-Szemerédi set if every subset of I of cardinality at least δ |I|
contains an arithmetic progression of length m.

3. MAIN RESULTS

3.1. PAPR Reduction Problem and Its Equivalent Formulation

In general, the PAPR of a function is defined as follows: Given an
orthonormal system tφnunPN, and index set K � N. For a wave-
form f of an orthogonal transmission scheme the PAPR of f (which
depends only on the transmission data a P `2pKq, and the used or-
thonormal system) can simply be given by

PAPRptφkukPK ,aq � ess sup
tPr0,1s

|°kPK akφkptq|
}a}

`2pKq
.

Notice that our version of PAPR differs slightly with that given in
some literature by a square. One can show [29, 2], that:

?
N ¤ sup

}a}
`2
¤1

PAPRptφkukPrNs,aq.

Moreover, a sequence a, with }a}`2 � 1, for which above inequal-
ity holds, can easily be constructed. As already mentioned in the
introduction, the high dynamical behaviour has in particular a neg-
ative impact to the reliability, the cost, and energy efficiency of an
orthogonal transmission scheme [1, 2, 30].

A canonical strategy to reduce the peak value of a waveform
generated by orthonormal functions is the so called tone reservation
[16, 17, 18], which is formalized as follows:
Definition 2 (PAPR Reduction Problem): Let tφnunPN be an or-
thonormal system in L2pr0, 1sq, and I � N. We say the PAPR
reduction problem is solvable for the pair ptφnunPN , Iq with con-
stant CEx ¡ 0, if for every a P l2pIq, there exists b P l2pIcq,
satisfying }b}`2pIcq ¤ CEx }a}`2pIq, for which the following holds:

ess sup
tPr0,1s

|
¸
kPI

akφkptq �
¸
kPIc

bkφkptq| ¤ CEx }a}`2pIq (2)

We further refer I as information set, Ic as compensation set,
tφnunPI as information tones, and respectively tφnunPIc as com-
pensation tones. A necessary condition for the solvability of the
PAPR reduction problem is surely, that tφnunPI is uniformly
bounded, in the sense that φn P L8pr0, 1sq, and }φn}L8pr0,1sq ¤ C
for all n P I, with C ¡ 0 a certain constant. To avoid any

3800



further undesirable behaviour, we assume that all of the consid-
ered orthonormal systems are uniformly bounded. The condition
}b}`2pIcq ¤ CEx }a}`2pIq serves in some sense as a restriction of
the possible solutions of the PAPR reduction problem [1]. Notice
also, that we allow infinitely many carriers for the compensation of
the PAPR value. This is of practical interests, since the solvability of
the PAPR reduction problem in the setting, where the corresponding
compensation set is infinite, is a necessary condition for the solvabil-
ity of the PAPR reduction problem in the setting, where the available
compensation tones are of finite number. In particular, limitations
for the tone reservation method in the setting, where the available
compensation tones are of infinite number, are also limitations for
the tone reservation method in the setting, where the available com-
pensation tones are of finite number. This is suited for our aim to
investigate information sets for which the PAPR reduction is not
solvable with a given extension constant.

It was shown in [1], that the PAPR reduction problem is con-
nected to the embedding problem of F1pIq seen as a subspace of
L1pr0, 1sq into L2pr0, 1sq:
Theorem 1 (Boche and Farell [1]): Let tφnunPN be a Complete
ONS (CONS) in L2pr0, 1sq. Given a subset I � N and a constant
CEx ¡ 0. The PAPR reduction problem is solvable for ptφnunPN , Iq
with extension constant CEx if and only if the following holds:

}f}L2pr0,1sq ¤ CEx }f}L1pr0,1sq , @f P F1pIq. (3)

Given a fixed CEx ¡ 0. Above Theorem asserts that to show that the
PAPR reduction problem is not solvable for ptφnunPN , Iq, where I
is a given information set, with extension constant CEx, it is enough
to find a function f P F1pIq, for which the embedding equation (3)
does not hold. Such a function can be constructed by means of an
arithmetic progression within the information set:
Lemma 2: Let be I � N. Assume that there exists an arithmetic
progression of length m ¥ 2 in I. Then, if the PAPR reduction
problem is solvable for ptenunPN , Iq with a given CEx ¡ 0, it fol-
lows

CEx ¡
?
m��°m

k�1 ek
��
L1pr0,1sq

.

Proof: Consider the signal fptq � °m
k�1

1?
m
ei2πpa�dkqptq. It is

obvious, that f P F1pIq. Furthermore, we have:

}f}L1pr0,1sq �
�����
m̧

k�1

1?
m
ei2πpa�dkqp�q

�����
L1

�
�����
m̧

k�1

1?
m
ei2πdkp�q

�����
L1

By substituting the variable of the integral, and by noticing that°m
k�1

1?
m
ei2πkp�q is 1-periodic and that ei2πt is of modulus 1, we

have:

}f}L1 �
�����
m̧

k�1

1?
m
ei2πdkp�q

�����
L1

� 1?
m

�����
m̧

k�1

ek

�����
L1

.

It is not hard to see that }f}L2pr0,1sq � 1. Finally, by the as-
sumption that PAPR reduction problem is solvable for ptenunPN , Iq
with constant CEx, previous observation and Theorem 1, and the
fact f P F1pIq, we have 1 � }f}L2pr0,1sq ¤ CEx }f}L1pr0,1sq ¤
CEx

��°m
k�1 ek

��
L1pr0,1sq {

?
m, as desired.

Above Lemma asserts that in case the existence of an arithmetic pro-
gression of a given length in an information set can be ensured, the
limitation of the PAPR reduction problem can be found out by giving
an upper bound of the L1-norm of

°m
k�1 ek.

3.2. Bound for the Dirichlet Kernel and its Application to the
PAPR Reduction Problem

As we soon see, the desired upper estimate of the L1-norm of°m
k�1 ek given later relies in turn on the upper estimate of the L1-

norm of the Dirichlet kernel. It is known in the literature [31, 32],
that the L1-norm of the Dirichlet kernel DN is asymptotically like
p4{pπ2qq logpNq. However, a self-contained proof is hard to find.
By this reason, we give in the following a quantitative proof thatDN
is upper bounded by p4{pπ2qq logpNq up to an universal constant:
Theorem 3: For every N P N, it holds:

}DN}L1pr0,2πsq � 1
2π

» 2π

0

|DN ptq| dt   4
π2 logpNq � C,

where C ¡ 0 is a universal constant given by:

C � 3� 2
24�π2 � 4

π2 (4)

Proof: By the 2π-periodicity of DN and by the fact that DN is an
even function, it follows that

³2π
0
|DN ptq| dt �

³π
�π |DN ptq| dt �

2
³π
0
|DN ptq| dt. Thus to give a bound for }DN}L1pr0,2πsq, it is suf-

ficient to give a bound for
³π
0
|DN ptq| dt. Using the representation

(1), it holds:

» π
0

|DN ptq| dt �
�
� Ņ

k�1

» k 2π
2N�1

pk�1q 2π
2N�1

|sinpr 2N�1
2 stq|

|sinp t2 q| dt

�



�
» π

2Nπ
2N�1

|sinpr 2N�1
2 stq|

|sinp t2 q| dt. (5)

Notice that the first integral can be bounded by 2π and the last in-
tegral can be bounded by π. Now we aim to bound the remaining
N � 1 integrals on the right hand side of (5). Let be k P rN � 1s.
For t P r2πpk � 1q{p2N � 1q, 2πk{p2N � 1qs, it follows by the
fact that sin is monotonically increasing on r0, π{2s, and since it is
2π-periodic:

1
sinp t

2
q ¤ 1

sin

� pk�1qπ
2N�1


 . (6)

Now for t̃ ¡ 0, it holds t̃ � t̃3

3!
¤ sinpt̃q. Thus we have for for

t̃ ¤ π{2, 1
sinpt̃q ¤ 1

t̃
� 4t̃

24�π2 . By applying this inequality to (6), we

obtain 1
sinp t

2
q ¤ 2N�1

pk�1qπ �C1
pk�1qπ
2N�1

, where C1 :� 4{p24� π2q is
a universal positive constant. Therefore, we have:

» k 2π
2N�1

pk�1q 2π
2N�1

|sinpr 2N�1
2 stq|

|sinp t2 q| dt � 4
pk�1qπ � C1

4pk�1qπ
p2N�1q2 , (7)

since
³k 2π

2N�1

pk�1q 2π
2N�1

��sin �� 2N�1
2

�
t
���dt � 4{p2N � 1q.

By summing (7) over all k P t2, . . . , Nu, (5), and by the given
bound of the first and the last integral of (5), }DN}L1pr0,2πsq can be
bounded as follows:

π }DN}L1pr0,2πsq ¤ 3π �
Ņ

k�2

�
4

pk�1qπ � C1
4pk�1qπ
p2N�1q2

	
. (8)

Furthermore, it is elementary to give:

Ņ

k�2

4
pk�1qπ   4

π
plogpNq � 1q and

Ņ

k�2

C1
4pk�1qπ
p2N�1q2   C1π

2
. (9)
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The first relation follows from the usual bound of the partial sum
of harmonic series, and the second relation follows by the equality°N
k�1pk � 1q � NpN � 1q{2. Combining (8) and (9), the desired

result yields.

By more easier computations, one can obtain }DN}L1pr0,2πsq ¡
p4{pπ2qq logpNq. Thus, the upper bound given in above Theorem
is in some sense tight. Having established an upper bound of the
L1-norm of the Dirichlet kernel, it is immediate to give an estimate
of the L1-norm of

°m
k�1 ek, since it can be seen as a ”truncated”

Dirichlet kernel:
Corollary 4: Let be m ¥ 2. It holds

��°m
k�1 ek

��
L1pr0,1sq  

4
π2 log

�
m
2

� � C�, where C� ¡ 0 is a universal constant given
by:

C� � 4� 2
24�π2 � 4

π2 (10)

Proof: It holds:

m̧

k�1

ekptq �
m�1̧

k�0

ei2πkt � ei2πr
m�1

2 st
k�rm�1

2 s¸
k��rm�1

2 s

ei2πkt�Resmptq,

where Resmptq � 0, ifm is an odd number, and Resmptq � ei2πmt,
if m is an even number. By triangle inequality, and by the fact
that eir

m�1
2 st has modulus 1, and by (3) and the substitution of

the variable of the integral, we have
���°m�1

k�0 e
ikp�q

���
L1pr0,1sq

 
4
π2 log

�P
m�1

2

T� � C � }Resm}L1pr0,1sq, where C ¡ 0 is a uni-
versal constant given by (4). Clearly, }Resm}L1pr0,1sq can be upper
bounded by 1. Thus, since log is monotonically increasing, we have���°m�1

k�0 e
i2πkp�q

���
L1pr0,1sq

  4
π2 log

�
m
2

�� C � 1, as desired.

Finally, the estimate of the L1-norm of
°m
k�1 ek given in corollary

4 allows us to specify Lemma 2 as follows:
Lemma 5: Let be I � N. Assume that there exists an arithmetic
progression of length m ¥ 2 in I. Then, if the PAPR reduction
problem is solvable for ptenunPN , Iq with a given CEx ¡ 0, it fol-
lows:

CEx ¡
?
m

4
π2 log

�
m
2

�� C�
, (11)

for a universal constant C� ¡ 0 given by (10).

3.3. Asymptotic Probabilistic Result for the Solvability of PAPR
Reduction Problem

In case that the existence of an arithmetic progression of length
m P N can be ensured, Lemma 5 gives the limitation of the tone
reservation method, in the sense that the admissible extension con-
stant can not be smaller than

?
m{p 4

π2 log
�
m
2

� � C�q, where C�
is a universal constant, which can be given explicitly. One can ap-
ply Szemerédi [23] and Green-Tao’s [24] result to check whether an
arithmetic progression of lengthm P N exists in a given information
set, as already mentioned in the introduction.

As already announced in the last paragraph in the introduction,
we aim to construct probabilistically an information set, which is
(asymptotically) small relative to the set of available tones and for
which the tone reservation method performs badly. In doing that,
we use the following recent result on the existence of arithmetic pro-
gressions, more specifically pδ,mq-Szemerédi set, for the asymp-
totic probabilistic setting due to Conlon and Gowers:

Theorem 6 (Conlon, Gowers [27]): Given δ ¡ 0, and a natural
number m P N. There exists a constant C ¡ 0, s.t.:

lim
NÑ8

PprN sp is pδ,mq-Szemerédiq � 1, if p ¡ CN
�1

pm�1q .

Furthermore, an overview related to above result is given in [28].
The corresponding application to the PAPR reduction problem can
finally be given:
Theorem 7: Let be m P N, and δ P p0, 1q. Given a constant CEx ¡
0. Then, there is a constant C, s.t.:

lim
NÑ8

P pAN,m,pq � 1, if p ¡ C

N
1

m�1

,

where AN,m,p denotes the event: ”The PAPR problem is not solv-
able for ptenunPN , Iq with

CEx ¤
?
m

4
π2 log

�
m
2

�� C�
, (12)

whereC� ¡ 0 is an absolute constant given by (10), for every subset
I � rN sp of size |I| ¥ δN ”

Proof: Choose m sufficiently large, s.t. (11) does not hold. Thm.
6 asserts the existence of a constant C ¡ 0, such that the set rN sp
resulted by choosing elements of rN s independently by probability
p ¡ C{pN 1

m�1 q, is a pδ,mq-Szemerédi with probability tends to 1
as N tends to infinity. By the definition of pδ,mq-Szemerédi set and
Lemma 5, the result follows immediately.

In more convenient words, we have shown that by probabilistic con-
struction (i.i.d.), where the selection probability is not too small (de-
pendending to the size of the available tones), the resulted informa-
tion set is asymptotically almost surely behaves badly with respect
to tone reservation method.

4. DISCUSSION - OUTLOOK - RELATION TO PRIOR
WORKS

In this paper, we have studied the limitations of the tone reservation
method in the probabilistic asymptotic setting. We show in particu-
lar that for a sufficiently large number N of carriers, choosing each
element of that set independently with arbitrary small probability,
yields in turn a set of carriers, for which the PAPR reduction prob-
lem is not solvable asymptotically almost surely with certain given
threshold constants, which can explicitly be given.

Furthermore, the statement given in this work is stronger than
aforementioned, since the previous mentioned statement holds not
only for the mentioned probabilistic set of carriers I but also for
all subsets of I having cardinality at least δ |I|. The correspond-
ing proof is based on the results given in [1, 2] on the connection
between the existence of an arithmetic progression in an informa-
tion set and the solvability of the PAPR reduction problem, and the
recent result given in [27] on probabilistic ”sparse” Szeméredi set.
However, we have explicitly specified in aforementioned case the
extensions constant for which the PAPR reduction is not solvable.
The corresponding approach is based on the upper bound of the L1-
norm of the Dirichlet kernel. Furthermore, until now, there is no
approach to analyze the behaviour of the tone reservation method in
the asymptotic probabilistic setting.

The results given in this work asserts that the tone reservation
method behaves badly for OFDM systems with large/massive num-
ber of carriers, since even by choosing a small sets (relative to the
whole available carriers) active carriers randomly, the tone reserva-
tion method is not applicable for certain threshold constants.
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