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ABSTRACT

In energy harvesting (EH) network, the energy storage devices (i.e.,
batteries) are usually not perfect. In this paper, we consider a practi-
cal battery model with finite battery capacity, energy (dis-)charging
loss, and energy dissipation. Taking into account such battery im-
perfections, we rely on the Lyapunov optimization technique to de-
velop a stochastic online control scheme that aims to maximize the
utility of data rates for EH multi-hop wireless networks. It is estab-
lished that the proposed algorithm can provide a feasible and effi-
cient data admission, power allocation, routing and scheduling so-
lution, without requiring any statistical knowledge of the stochastic
channel, data-traffic, and EH processes.

Index Terms— Stochastic optimization, energy harvesting, bat-
tery imperfections, wireless networks.

1. INTRODUCTION

Different from traditional communication systems, energy har-
vesting (EH) from environmental sources shifts the paradigm on
resource allocation from reducing energy consumption to the most
efficient utilization of opportunistic energy. Existing works [1–5] on
EH communications mostly addressed offline optimizations, where
the EH profiles were assumed to be known a priori. In practical
scenarios, complete predictability of EH profiles is clearly an over-
simplified assumption. Relying on past realizations of EH processes
and certain statistics of their future evolutions, [2–4] developed some
heuristic online algorithms, which, however, lack strong analytical
performance guarantees. By modeling the EH and/or data processes
as Markov processes, online optimizations were cast as Markov
decision problems (MDP) and numerically solved with dynamic
programming tools in [1, 5]. However, the well-known “curse-of-
dimensionality” with such solutions precludes their application for
all but the simplest practical networks.

Leveraging stochastic optimization tools, a few low-complexity
online schemes were developed in [6–8]. These schemes assumed
ideal energy storage devices (i.e., batteries) in use. Under this as-
sumption, the energy-queue sizes at the batteries can play the role
of “stochastic” Lagrange multipliers to develop a dual-subgradient
based solver to the intended problems. However, the imperfections
with practical batteries could disable this approach. In this paper, we
consider a practical battery model accounting for finite battery ca-
pacity, energy (dis-)charging loss, and energy dissipation over time.
By integrating and generalizing the Lyapunov optimization tech-
niques in [8, 9], we re-establish a systematic framework to develop
and analyze the stochastic online control schemes for EH wireless
networks with such imperfect batteries. Specifically, we propose a
data-backpressure based scheduling and degenerated energy-queue
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based power allocation scheme that can maximize the utility of da-
ta rates for EH multi-hop wireless networks, without requiring any
statistical knowledge of the channel, data-traffic, and EH processes.
Different from [8] where an EH admission mechanism is performed
to ensure finite energy queues, we apply the sample path analysis
in [10, 11] to derive the conditions that the proposed scheme is fea-
sible for any given battery capacities without EH admission, which
can help fully exploit the available harvested energy. In addition,
we rigorously establish the performance guarantees of the proposed
scheme in form of sub-optimality bounds in the presence of prac-
tical battery imperfections. Numerical results demonstrate that the
proposed scheme significantly outperforms the existing alternatives.

The rest of the paper is organized as follows. The system models
are described in Section II. The proposed dynamic resource manage-
ment scheme is developed and analyzed in Section III. Numerical
results are provided in Section IV, followed by conclusions.

2. SYSTEM MODELS

Consider a general EH multi-hop wireless network that operates in
slotted time. For convenience, the slot duration is normalized to
unity; thus, the terms “energy” and “power” can be sometimes
used interchangeably. The network is represented by a graph
G = (N ,L), where N = {1, . . . , N} denotes the nodes, and
L = {[n,m], n,m ∈ N} collects the directed links between
nodes. For each node n ∈ N , define two sets of neighbor nodes
N o

n := {m : ∀[n,m] ∈ L}, and N i
n := {m : ∀[m,n] ∈ L}.

Further define dmax := maxn{|N i
n|, |N o

n |} as the maximum in-
and out-degree for nodes in the network.

2.1. Network Traffic and EH Model

The network delivers packets for data flows indexed by their desti-
nation nodes c. Per time slot t, a data admission is implemented by
the network to decide the number Rc

n(t) of packets for flow c that
can be newly admitted at node n. We assume that

0 ≤ Rc
n(t) ≤ Rmax, ∀n, c, ∀t. (1)

Each node is capable of harvesting energy from the environmen-
tal sources to power its transmissions. The amount of harvested en-
ergy is clearly random over time. Let e(t) := [e1(t), . . . , eN (t)] be
called the energy state at t, where en(t) is the energy that node n
harvests at slot t. We assume that e(t) takes values in some finite set
and there exists emax such that

0 ≤ en(t) ≤ emax, ∀n, ∀t.

2.2. Transmission Model

Per slot t, let S(t) denote the time-varying, random channel s-
tate, which in general can be an N -by-N matrix, and the (n,m)
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component denotes the channel condition between nodes n and
m. We assume that S(t) takes values in some finite set for all
time. Given S(t), the network allocates a power vector P (t) :=
[P[n,m](t), ∀[n,m] ∈ L] for data transmissions over links, where
P[n,m](t) denotes the power allocated to node n for link [n,m] at
time t. We assume that each node has a peak power constraint:

0 ≤
∑

m∈No
n

P[n,m](t) ≤ Pmax, ∀n, t. (2)

Given S(t) and P (t), the transmission rate over the link [n,m]
is dictated by a rate-power function

μ[n,m](t) = μ[n,m](S(t),P (t)). (3)

We also assume that each link has a peak rate constraint such that

μ[n,m](t) ≤ μmax, ∀[n,m] ∈ L
for all time under any channel state S(t). Now let μc

[n,m](t) denote
the rate allocated to the data flow c over link [n,m] at time t. It is
clear that we have:∑

c

μc
[n,m](t) ≤ μ[n,m](t), ∀[n,m]. (4)

Let Q(t) := [Qc
n(t), ∀n, c ∈ N ] denote the data queue backlog

vector at time t, where Qc
n(t) is the backlog data for flow c at node

n. For the given data admission and rate allocation, we have

Qc
n(t+ 1) ≤

⎡
⎣Qc

n(t)−
∑

m∈No
n

μc
[n,m](t)

⎤
⎦

+

+
∑

m∈N i
n

μc
[m,n](t) +Rc

n(t), ∀n, c
(5)

with Qc
n(0) = 0, ∀n, c, Qc

c(t) = 0, ∀t, and [x]+ := max{x, 0}.

2.3. Imperfect Battery Model

Every node has a storage device, i.e., battery, to save the harvested
energy. Consider a practical battery with: i) a finite capacity, ii) (dis-
)charging loss, and iii) energy degeneration. Let Emax ∈ (0,∞)
denote the battery capacity, ξ ∈ (0, 1] the (dis-)charging efficiency
(e.g., ξ = 0.9 means that only 90% of the charged or discharged
energy is useful), and η ∈ (0, 1] the storage efficiency (e.g., η = 0.9
means that 10% of the stored energy will be “leaked” over a slot).

We can model the battery using an energy queue. Let En(t) de-
note the energy queue size, which indicates the amount of the energy
left in the battery of node n at time t; and let E(t) := [En(t), ∀n ∈
N ]. As the data transmissions are powered by the harvested energy
stored in the batteries, the power allocation vector P (t) must satisfy
the following “energy availability” constraint:∑

m∈No
n

P[n,m](t) ≤ ξηEn(t), ∀n (6)

where the product ξη captures the discharging loss and energy de-
generation.

For the given energy queue size, power allocation and energy
state at time t, we have:

En(t+ 1) = ηEn(t)−
∑

m∈No
n
P[n,m](t)

ξ
+ ξen(t), (7)

0 ≤ En(t) ≤ Emax (8)

with En(0) = 0, ∀n.

2.4. Network Utility Maximization

Define the time-average rate for data flow c that is admitted into node
n, as

r̄cn = lim
T→∞

1

T

T−1∑
t=0

E{Rc
n(t)}

where the expectation are taken over all sources of randomness.
Each flow c is associated with a utility function Uc

n(r̄
c
n), which is as-

sumed to be strictly increasing, differentiable, and concave. Let gcn
denote the maximum first derivative of Uc

n(r), and define gmax =
maxn,c g

c
n, which is assumed to be finite.

Note that the energy state e(t) and the channel state S(t) are
random processes. The EH wireless network is thus a stochastic sys-
tem. The goal is to design an online resource management scheme
that chooses the data admission amounts R(t) := [Rc

n(t), ∀n, ∀c],
the power allocations P (t) = [P[n,m](t), ∀[n,m]], as well as the
routing and scheduling decisions μ(t) := [μc

[n,m](t), ∀[n,m], ∀c]
per slot t, so as to maximize the aggregate utility of time-average
data rates subject to (s. t.) network operation constraints. Upon
defining X := {R(t),P (t),μ(t), ∀t}, we wish to solve

Uopt :=max
X

∑
n,c

Uc
n(r̄

c
n)

s. t. (1), (2), (3), (4), (5), (6), (7), (8), ∀t.
(9)

3. DYNAMIC RESOURCE MANAGEMENT SCHEME

The problem (9) is challenging as the optimization variables are cou-
pled over time due to the queue dynamics and energy availability
constraints in (5)–(7). We next resort to the Lyapunov optimization
techniques in [8, 9] to develop a low-complexity online control al-
gorithm, which can be proven to yield a feasible and near-optimal
solution for (9) under conditions, without requiring any statistical
knowledge of stochastic EH and channel processes.

3.1. Properties of Rate-Power Function

To start, we assume that the rate-power function in (3) satisfies the
following two properties for any given channel state S:

Property 1 For two power allocation vectors P and P ′, where P ′

is obtained by changing any single component P[n,m] to zero, we
have:

i) μ[n′,m′](S,P ) ≤ μ[n′,m′](S,P ′), ∀[n′,m′] �= [n,m];
ii) 0 ≤ μ[n,m](S,P ) − μ[n,m](S,P ′) ≤ δ1P[n,m], for a finite

constant δ1 ∈ [0,∞).

Property 2 For two power allocation vectors P and P ′, where
P ′
[n,m] = P[n,m] +

ΔP
|No

n| , ∀m ∈ N o
n , and P ′

[n′,m] = P[n′,m],
∀n′ �= n, we have:

i) μ[n,m](S,P ) ≤ μ[n,m](S,P ′), ∀m ∈ N o
n;

ii) 0 ≤ ∑
n′ �=n

∑
m∈No

n′
[μ[n′,m](S,P ) − μ[n′,m](S,P ′)] ≤

δ2ΔP , for a finite constant δ2 ∈ [0,∞).

Properties 1 and 2 will be the keys for our feasibility and opti-
mality gap analysis. They are actually satisfied by most rate-power
functions. For example, consider the interference-free case. Let
h[n,m] denote the channel coefficient from node n to node m, then

the rate function is μ[n,m] = log

(
1 +

|h[n,m]|2P[n,m]

σ2

)
. We readily

have δ1 = max{ |h[n,m]|2
σ2 , ∀[n,m]}, δ2 = 0.
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3.2. The Proposed Algorithm

We assume the following two conditions for the system parameters
in development of the proposed algorithm:

ξemax ≤ (1− η)Emax +
Pmax

ξ
; (10)

Emax ≥ Pmax

ξ
+ ξemax. (11)

Condition (10) is a necessary condition to maintain the stabili-
ty of the energy queues En(t) for every sample path. If ξemax >
(1 − η)Emax + Pmax

ξ
, i.e., the maximum energy arrival is deter-

ministically greater than the largest energy departure possible, then
there exists a sample path of energy queue En(t) that grows un-
bounded. On the other hand, condition (11) dictates that the battery
capacity is large enough to accommodate the largest possible charg-
ing/discharging range.

Our algorithm depends on two algorithmic parameters, namely
a “queue perturbation” parameter Γ and a weight parameter V . The
two parameters are in the Lyapunov technique. The derivation is
from the feasibility requirement (see Proposition 1 in the sequel),
which is one of our main contributions. Any pair (V,Γ) that satisfies
the following conditions can be used:

0 < V < V max, Γmin ≤ Γ ≤ Γmax
(12)

where

V max :=
Emax − ξemax − Pmax

ξ

ξ(δ1 + δ2)gmax
; (13)

Γmin :=
Pmax

ξη
+

ξ

η
δ1gmaxV ; (14)

Γmax :=
Emax − ξemax

η
− ξ

η
δ2gmaxV. (15)

Note that the interval for V in (12) is well-defined under the condi-
tion (11), and the interval for Γ is valid when V ≤ V max.

We now present the proposed algorithm:

Initialization: Select a pair of (V,Γ) satisfying (12), and a con-
stant Θ = Rmax + dmaxμmax.

At every time slot t, observe states {e(t),S(t)}, and queues
{Q(t),E(t)}, then determine R∗(t), P ∗(t), and μ∗(t) as follows.

• Data admission: Choose Rc∗
n (t), ∀n, c, to be the optimal

solution of the following problem:

max
Rc

n(t)
[V Uc

n(R
c
n(t))−Qc

n(t)R
c
n(t)]

s. t. 0 ≤ Rc
n(t) ≤ Rmax

(16)

• Power allocation: Define the link weight as W[n,m](t) =
maxc W

c
[n,m](t), where W c

[n,m](t) = [Qc
n(t) − Qc

m(t) −
Θ]+. Choose P ∗(t) to be the optimal solution of the follow-
ing problem:

max
P (t)

∑
n

[ ∑
m∈No

n

[W[n,m](t)μ[n,m](t)]

+
η

ξ
(En(t)− Γ)

∑
m∈No

n

P[n,m](t)
]

s. t. 0 ≤
∑

m∈No
n

P[n,m](t) ≤ Pmax, ∀n

(17)

Note that μ[n,m](t) is a function of P (t). Having obtained
P ∗(t), the rate allocated to link [n,m] is μ∗

[n,m](t) =
μ[n,m](S(t),P ∗(t)).

• Routing and scheduling: For each node n, choose any č ∈
argmaxc W

c
[n,m](t). If W č

[n,m](t) > 0, set

μč∗
[n,m](t) = μ∗

[n,m](t), and μc∗
[n,m](t) = 0, ∀c �= č.

This is the well-known MaxWeight matching scheduling.

• Queue updates: Update Qc
n(t) and En(t) via (5) and (7),

respectively, based on R∗(t), P ∗(t), and μ∗(t).

Some comments are in order.

i) Different from the ESA algorithm in [8], there is no EH ad-
mission mechanism in the proposed algorithm; the available
harvested energy could be then fully capitalized on for data
transmission.

ii) The perturbed energy queue-size En(t) − Γ is weighted by
η
ξ

in the problem (17) to determine the optimal power alloca-
tion. These weights are used to account for the battery degen-
eration and discharging loss.

The proposed algorithm is an online scheme, which dynamically
makes instantaneous greedy control decisions for the stochastic sys-
tem under consideration, without a-priori knowledge of any statistics
of the underlying random processes.

3.3. Feasibility Guarantee

Note that in the proposed algorithm, energy availability constraint
(6) and the bounded energy queue constraint (8) are ignored. It is
then not clear whether the algorithm is feasible for the problem (9).
Yet, we can show that by using any pair (V,Γ) in (12) and Θ =
Rmax + dmaxμmax, the proposed algorithm is a feasible one under
the conditions (10)–(11). To this end, we first show that1.

Lemma 1 The power allocation policy obeys: i)
∑

m∈No
n
P ∗
[n,m](t)

= 0, if En(t) < Γ − ξ
η
δ1gmaxV ; and ii)

∑
m∈No

n
P ∗
[n,m](t) =

Pmax, if En(t) > Γ + ξ
η
δ2gmaxV , ∀n.

Lemma 1 reveals partial characteristics of the proposed dynam-
ic policy. Specifically, when the energy queue at node n is large
enough, peak power can be afforded for its data transmissions; i.e.,∑

m∈No
n
P ∗
[n,m](t) = Pmax. On the other hand, when the energy

queue at node n is small enough, no power should be allocated; i.e.,∑
m∈No

n
P ∗
[n,m](t) = 0.

Based on Lemma 1, we then establish the following result.

Proposition 1 Under the conditions (10)–(11), the proposed algo-
rithm guarantees: i)

∑
m∈No

n
P ∗
[n,m](t) = 0, if ξηEn(t) < Pmax,

and ii) 0 ≤ En(t) ≤ Emax, ∀n, ∀t.

Proposition 1 implies that the proposed algorithm with proper
selection of (V,Γ) and Θ can always yield a feasible control policy
for (9) under the conditions (10)–(11). Note that Proposition 1 is a
sample path result; i.e., it holds for every time slots under arbitrary,
even non-stationary, {e(t),S(t)} processes.

1The proofs for the lemmas and propositions can be found in [12].
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3.4. Optimality Gap

By assuming that the random process for {e(t),S(t)} is indepen-
dent and identically distributed (i.i.d.) over time slots, we establish
the following optimality result.

Proposition 2 Suppose that conditions (10)–(12) hold, and {e(t),S(t)}
is i.i.d. over slots. Let r̄c∗n (T ) be the time-average admitted rate
vector achieved by the proposed algorithm up to time T , i.e.,
r̄c∗n (T ) = 1

T

∑T−1
t=0 E{Rc∗

n (t)}. Then

lim
T→∞

inf
∑
n,c

Uc
n(r̄

c∗
n (T )) ≥ Uopt − B

V

where the constant

B = N2B1 +N(B2 +B3), (18)

with B1 = 2d2maxμ
2
max + 1

2
R2

max + 2dmaxμmaxRmax, B2 =
1
2
max{[Pmax

ξ
+ (1 − η)Γ]2, [−ξemax + (1 − η)Γ]2}, B3 =

η(1 − η)max{(Emax − Γ)2,Γ2} and Uopt is the optimal value
of (9) under any feasible control algorithm, even the one knowing
future random realizations.

Proposition 2 asserts that the proposed algorithm asymptotically
yields a time-average utility with an optimality gap smaller than B

V
.

The proposed scheme is in fact a modified version of the queue-
length based stochastic optimization scheme, where the “perturbed”
queue lengths play the role of “stochastic” Lagrange multipliers
with a dual-subgradient solver to the problem of interest. The gap
N2B1/V is inherited from the underlying stochastic subgradient
method. On the other hand, the gap NB2/V is due to the combined
effect of energy-queue perturbation and battery imperfections, while
the gap NB3/V is incurred by the battery degeneration.

Based on Propositions 1 and 2, we arrive at the main result.

Theorem 1 Suppose that conditions (10)–(12) hold and {e(t),S(t)}
is i.i.d. over slots. The proposed algorithm yields a feasible dynamic
control scheme for (9), which has an optimality gap B

V
; i.e.,

Uopt ≥ lim
T→∞

inf
∑
n,c

Uc
n(r̄

c∗
n (T )) ≥ Uopt − B

V
.

where r̄c∗n (T ) = 1
T

∑T−1
t=0 E{Rc∗

n (t)} and B is given by (18).

4. NUMERICAL TESTS

Consider a multi-hop network in Fig. 1, where the nodes 1–4 collect
data and send data to the sink node 7 through relay nodes 5 and
6 [8]. In simulations, we assume imperfect batteries at nodes, with
storage efficiency η = 0.98 and (dis-)charging efficiency ξ = 0.95.
Table 1 lists the values for dmax (the maximum in- and out-degree
for nodes in the network), Rmax (the maximum packets that can
be newly admitted), Pmax (the peak power), μmax (the maximum
rate over all the links) and Emax (the battery capacity). The utility
function is selected as:

∑
n,c U

c
n(r̄

c
n) = ln(1 + r̄71) + ln(1 + r̄72) +

ln(1 + r̄73) + ln(1 + r̄74). Suppose that all the links are independent
with each other, implying δ2 = 0. The link state S[n,m](t) can be
either good or bad with equal probability. One unit of power can
deliver two packets when the link state is good, while it can be only
used to transmit one packet upon bad link state. We also assume
that the harvested energy en(t) is i.i.d. for each node; en(t) is either

Table 1. Parameters Configuration.

dmax Rmax Pmax μmax Emax

2 3 2 2 160

Fig. 1. Data collection network.

emax or 0 with equal probability. As a result, we have: gmax = 1,
δ1 = 2 and Θ = dmaxμmax +Rmax = 7.

Fig. 2 compares the performance of the proposed algorithm with
the ESA in [8] and a heuristic greedy algorithm for different emax. It
is shown that the proposed algorithm evidently outperforms the ESA
and the greedy algorithm for any given emax. The greedy algorithm
in fact schedules the links in a time division multi-access (TDMA)
manner; the resultant utility is low in general and its performance
changes only slightly for different emax. The proposed algorithm
achieves higher utility than the ESA due to two reasons. The first
reason is that the ESA cannot make use of all available energy be-
cause of its EH admission mechanism, while the proposed algorithm
harvests all available energy. On the other hand, the ESA also has
a performance loss for small emax case since it does not take into
account the battery imperfections. For instance, when emax = 2,
simulations show that the utilization of available energy for the ESA
is 100%; yet, the utility with the proposed algorithm is still 17.2%
larger than that with the ESA in this case.

5. CONCLUSIONS

Taking into account imperfect finite-capacity energy storage devices,
a stochastic optimization was formulated to maximize the long-term
utility subject to the energy availability constraints for general E-
H wireless networks. Capitalizing on Lyapunov optimization tech-
nique, an online control algorithm was proposed to provide a feasible
and asymptotically near-optimal control solution.

2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

The maximum amount of harvested energy e
max

Ut
ilit

y

Proposed
ESA
Greedy

Fig. 2. Comparison of the proposed algorithm, the ESA and the
greedy algorithm.
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