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ABSTRACT

We introduce maximum-SINR sparse-binary waveforms that
modulate data information symbols from any finite alpha-
bet and span the whole continuum of the available/device-
accessible spectrum. We offer an optimal algorithm that
designs the proposed waveforms by maximizing the signal-
to-interference-plus-noise ratio (SINR) at the output of the
maximum-SINR linear receiver. In addition, we offer a
suboptimal algorithm for the same problem with signifi-
cantly reduced computational complexity. The post-filtering
SINR improvements attained by the proposed waveforms in
a single-input single-output (SISO) communication system
with colored interference are presented analytically. Simu-
lation studies compare the proposed waveforms with their
conventional non-sparse counterparts and demonstrate their
superior SINR performance.

Index Terms— All-spectrum, binary code sequences,
maximum SINR, sparsity, waveform design.

1. INTRODUCTION

In recent years, adaptively optimized binary code waveforms
attracted considerable attention with applications in physical
layer security, data hiding, and cognitive radio networking.
Recent work in cognitive underlay networking [1–5] consid-
ers adaptive code waveform optimization for secondary users
that operate concurrently in frequency and time with primary
users. Binary code waveforms are designed to span the whole
continuum of the available spectrum and are cognitively opti-
mized to maximize the signal-to-interference-plus-noise ratio
(SINR) at the output of the secondary receiver.

Recently proposed schemes in the context of overloaded
code-division multiple-access (CDMA) systems consider
sparsity in non-orthogonal code waveforms to enable low
complexity, effective detection of multiple users that commu-
nicate simultaneously over a common channel. Toward that
end, [6] defines a specific group of sparse code sequences to
enable near-optimal, multi-user detection using belief prop-
agation (BP). A statistical-mechanics framework for sparse
CDMA in [7] demonstrates that small values of sparsity

provide considerable spectral-efficiency performance im-
provements, while work in [8] presents a design technique for
constructing low-density, sparse code sequences with good
distance spectrum properties, that ensure good performance
in additive-white-Gaussian noise (AWGN) channels. On the
other hand, synthesis of low-density spreading sequences
in [9] is conducted on a trial-and-error search basis. Another
multiplexing scheme that enjoys low-complexity reception
due to sparse spreading is presented in [10].

Binary code waveforms for dense spreading sets have
been well studied in terms of total-squared correlation (TSC)
bounds and optimal designs [11]. New bounds and optimal
designs for minimum TSC quaternary signature sets are de-
rived in [12]. Related work on waveform design for sparse
spreading binary sets is very limited. Recent work in [13]
considers quadrature amplitude modulation (QAM) and pro-
vides a framework for designing sparse spreading code ma-
trices with maximum minimum code distance. Code distance
is optimized upon a given factor graph structure to ensure
maximum-likelihood (ML), and BP detection performance
and reduced complexity.

In this paper, instead of static binary code waveforms we
propose for the first time in the literature adaptive design of
sparse binary code waveforms that maximize SINR at the
output of the maximum-SINR linear filter. In this present
work, we provide both an optimal sparsity waveform design
algorithm and a suboptimal, computationally efficient, itera-
tive design algorithm. Simulation studies demonstrate post-
filtering SINR superiority for particular values of sparsity in a
single-input single-output (SISO) communication system that
operates in colored interference.

2. SYSTEM MODEL
We consider a single-antenna user transmitting information
symbols over a SISO flat-fading channel with N paths. The
symbols are drawn from a complex constellation A of energy
E and, traditionally, modulated with a length-L binary code
waveform s ∈ {± 1√

L
}L. The down-converted and pulse-

matched received signal vector that corresponds to the i-th
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transmitted symbol, bi ∈ A, is given by

yi
4
= Hsbi + ii + ni ∈ CLM×1, (1)

where LM = L + N − 1, H ∈ CLM×L is the multi-
path channel matrix, ii ∈ CLM×1 accounts for colored

interference with autocorrelation matrix Ri
4
= E{iiiHi } ∈

CLM×LM , and ni ∼ CN (0LM
, σ2ILM

) is white Gaussian
noise. For any general waveform s with ‖s‖2 = 1 and
given symbol-constellation energy E, transmission energy

is given by ρ(s)
4
= E‖s‖22 = E. By (1), the autocorre-

lation matrix of the overall disturbance, di
4
= ii + ni, is

Rd
4
= E{did

H
i } = Ri + σ2ILM

and the linear filter at the
receiver that exhibits maximum output SINR can be found

to be any scaled version of wmax-SINR(s)
4
= R−1d Hs. The

corresponding maximum post-filtering SINR is then found

to be SINR(s)
4
= E s>HHR−1d Hs. That is, posterior to

max-SINR filtering, for given Rd and H, the SINR is only a
function of waveform s. Traditionally, the transmitter seeks
to design and employ a maximum-SINR binary waveform ŝ,
defined as

ŝ
4
= argmax

s∈{± 1√
L
}L

s>As, (2)

where A
4
= HHR−1d H. The above well-known waveform

design problem can be solved optimally by exhaustive eval-
uation of all 2L binary vectors s ∈ {± 1√

L
}L. However, the

complexity of the problem in (2) grows exponentially with
code-waveform length L. Prior work on optimal and subop-
timal algorithms for the design of ŝ can be found in [14–18]
and references therein. In this work, we make for the first
time in the literature a case for the design and employment of
sparse-binary maximum-SINR waveforms.

3. PROPOSED SPARSE WAVEFORM DESIGN

3.1. Problem Formulation

We start with the intuitive remark that, due to chip distur-
bance correlations, there may be chip-transmission intervals
wherein the transmitter should avoid operating. Mathemati-
cally, allowing for sparsity in (2), we define the sparse-binary
max-SINR-optimal waveform

ŝs
4
= argmax

s∈{0,± 1√
L
}L

s>As (3)

and, by extension of the feasibility set, we find, indeed,

SINR(ŝs) ≥ SINR(ŝ). (4)

In addition, ρ(ŝs) = E‖ŝs‖22 = E ‖ŝs‖0L ≤ E = ρ(ŝ), where
‖ · ‖0 returns the number of non-zero entries of its argument.

That is, omitting transmission, optimally, in some of the chip
intervals could increase post-filtering SINR and, at the same
time, reduce transmission energy. Our second important ob-
servation is that ŝs may not be the most SINR efficient wave-
form among those that attain transmission energy ρ(ŝs). That
is, ŝs is not necessarily the maximizer of s>As over {s ∈
{0,±c}L; Ec2‖s‖0 = ρ(ŝs), c ∈ R}.

In view of the above, in this paper we focus on design-
ing max-SINR, optimally-sparse binary waveforms for fixed
transmission energy. Specifically, we consider transmission
energy fixed to E (equal to that of the max-SINR full binary
waveform ŝ) and propose waveform design by

s̃
4
= argmax

s∈{0,±c}L

c2‖s‖0=1, c∈R

s>As. (5)

Notice that, indeed, for every element s in the feasibility set
of (5), ρ(s) = Ec2‖s‖0 = E, which implies

ρ(s̃) = ρ(ŝ). (6)

In addition, for any 0 < α ≤ 1, we find

max
s∈{0,±c}L

c2‖s‖0=1, c∈R

s>As = max
K∈[L]

max
s∈{0,± 1√

K
}L

‖s‖0=K

s>As (7)

≥max
K∈[L]

max
s∈{0,± 1√

K
}L

‖s‖0=K

α s>As, (8)

where [L]
4
= {1, 2, . . . , L}. (7)-(8) in turn imply

max
s∈{0,±c}L

c2‖s‖0=1, c∈R

s>As ≥ max
K∈[L]

max
s∈{0,± 1√

K
}L

‖s‖0=K

K

L
s>As (9)

=max
K∈[L]

max
s∈{0,± 1√

L
}L

‖s‖0=K

s>As = max
s∈{0,± 1√

L
}L

s>As. (10)

From (4) and (9)-(10) we conclude

SINR(s̃) ≥ SINR(ŝ). (11)

By (6) and (11), the proposed optimal sparse-binary wave-
form s̃ attains the same transmission energy with the conven-
tional binary waveform designed per (2), while it offers higher
or equal post-filtering SINR.

3.2. Optimal Algorithm

It is clear at this point that the problem in (5) is a combina-
torial problem. Therefore, its solution can be found by ex-
haustive search within its feasibility set. The description of
an optimal algorithm for this task follows.
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First, we focus on solving the inner maximization prob-
lem in (7), for every K ∈ {1, 2, . . . , L}, to obtain

s̃K
4
= argmax

s∈{0,± 1√
K
}L

‖s‖0=K

s>As. (12)

The solution to (12) can be found by examining exhaustively
all
(
L
K

)
2K elements of its feasibility set. Then, we obtain s̃

by solving

s̃ = argmax
s∈{s̃1,...,s̃L}

s>As. (13)

Certainly, (13) can be solved online by updates every time
(12) is solved for some K. Therefore, (5) can be solved op-
timally by means of the presented algorithm by exhaustive
search among all

L∑
K=1

(
L

K

)
2K = 3L (14)

elements of its feasibility set, with complexity O(3L).1 A
pseudocode of the presented algorithm is offered in Fig. 1.

3.3. Suboptimal Iterative Algorithm

The complexity of the optimal algorithm presented above
may be prohibitive for real-time application when L is large.
In this section, we present a suboptimal iterative algorithm
for solving (5) with complexity O(L4). We commence our
algorithm by decomposing A –e.g., by means of eigen-
value decomposition (EVD)– as A = WHW, for some
W ∈ CL×L. Then, by the Cauchy-Schwarz inequality [20],

max
s∈{0,± 1√

K
}L

‖s‖0=K

√
s>As = max

s∈{0,± 1√
K
}L

‖s‖0=K

max
a∈CL

‖a‖2=1

<
{
s>WHa

}
(15)

= max
a∈CL

‖a‖2=1

max
s∈{0,± 1√

K
}L

‖s‖0=K

<
{
s>WHa

}
, (16)

where<{·} returns the real part of its argument. For any given
s in the feasibility set of the outer maximization in (15), the
inner maximization is achieved for

a =
Ws

‖Ws‖2
. (17)

Also, for any given a in the feasibility set of the outer maxi-
mization in (16), the inner maximization is achieved for

s =
1√
K

sgn
(
IK
(
<
{
WHa

}))
, (18)

where sgn(·) returns the sign of its argument (by convention,
sgn(0) = 0), and IK(·) returns its argument after setting to
zero the L−K entries with the lowest absolute values.

1Equality in (14) holds by the Binomial Theorem [19].

Optimal Algorithm

Input: A = HHRd
−1H

1: s̃← 1√
L
1L; m← s̃>As̃

2: for K ∈ {1, 2, . . . , L}
3: for I ⊆ {1, 2, . . . , L}, |I| = K

4: for b ∈ {± 1√
K
}K

5: [s]I ← b, [s]{1,2,...,L}\I ← 0L−K

6: if s>As > m, s̃← s, m← s̃>As̃
Output: s̃

Fig. 1. Pseudocode for the presented optimal algorithm that
solves (5) to design the proposed optimally-sparse max-SINR
waveform.

By the above observations, for every K ∈ {1, 2, . . . L},
the algorithm initializes at some arbitrary a

(0)
K ∈ CL×1 with∥∥∥a(0)K

∥∥∥
2
= 1 and generates a converging sequence of points

in the feasibility set of (12), {s(t)K }t=1,2,.... Specifically, at the
t-th iteration step, t > 1, the algorithm calculates

s
(t)
K =

1√
K

sgn
(
IK
(
<
{
WHa

(t−1)
K

}))
, (19)

a
(t)
K =

Ws
(t)
K∥∥∥Ws
(t)
K

∥∥∥
2

. (20)

Certainly, <{s(t)K WHa
(t)
K } ≥ <{s(t−1)K WHa

(t−1)
K } and,

since <{s(t)K WHa
(t)
K } is bounded by (15), the algorithm will

converge in a finite number of steps TK > 1. After obtaining

a converging point sK
4
= s

(TK)
K by the above iterations for ev-

eryK ∈ {1, 2, . . . , L}, the algorithm returns the approximate
solution to (5)

sIT
4
= argmax

s∈{s1,s2,...,sL}
s>As. (21)

A pseudocode for the presented iterative algorithm is given in
Fig. 2. In the sequel we discuss its complexity and present a
modification for further performance enhancement.

a) Complexity: Decomposition A = WHW costsO(L3)
(e.g., by means of EVD). Then, for every K ∈ {1, 2, . . . , L},
the algorithm executes TK iteration steps. At each iteration
step, say the t-th, the cost to find s

(t)
K and a

(t)
K is O(L2).

Therefore, the cost for all iterations for all values of K is
O(
∑L

K=1 TKL
2). Setting, in practice, TK ≤ L, for every

K, all iterations cost O(L4). Thus, the overall cost of the
proposed iterative algorithm is O(L4).

b) Modification: The performance of the proposed sub-
optimal algorithm can be improved if, for each value of K,
we run the presented iterations on P > 1 distinct (arbitrary)
initializations a

(0)
K,1, . . . ,a

(0)
K,P , obtaining corresponding con-

verging points sK,1, . . . , sK,P . Then, we select as sK to be
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Suboptimal Iterative Algorithm

Input: A = HHRd
−1H

1: calculate W ∈ CL×L such that A = WHW

2: for K ∈ {1, 2, . . . , L}
3: a← arbitrary in CL×1, with ‖a‖2 = 1; m← 0

4: until convergence,
5: s← 1√

K
sgn

(
IK
(
<
{
WHa

}))
6: a← Ws

‖Ws‖2
7: m′ ← s>As

8: if m′ −m ≤ threshold; sK ← s; convergence
10: m← m′

11: sIT ← argmaxs∈{s1,...,sL}s
>As

Output: sIT

Fig. 2. Pseudocode for the presented suboptimal iterative al-
gorithm for solving (5).

examined in (21) the element of {sK,1, . . . , sK,P } that offers
the highest value in the optimization metric of (5). By this
modification, the complexity increases to O(PL4).

4. SIMULATION STUDIES AND CONCLUSIONS

In this section, we present simulation studies to demonstrate
the performance of both the optimal and the suboptimal iter-
ative sparse-binary waveform design algorithms proposed in
this work. In all presented studies, we fix L = 10, N = 1,
Tr(Ri) = 25 dB, ‖H‖F = 1, σ = 1, and E = 10 dB.

In Fig. 3, we consider a single (H,Rd) configuration and
plot the post-filtering SINR attained by s̃K , solution to (12),
for K = 1, 2, . . . , L. We also plot the SINRs of ŝ, solution
to (2), and s̃, solution to (5). We observe that, expectedly,
SINR(ŝ) = SINR(s̃L). Also, we notice that s̃1 attains infe-
rior performance to that of the optimal non-sparse waveform
ŝ. However, importantly, for every sparsityK from 2 to 9, s̃K
outperforms ŝ with a maximum SINR difference for K = 5
(i.e., s̃ = s̃5). Fig. 3 is in accordance with our theoretical
results in Section 3 and highlights the benefits of sparsity in
the employed waveform.

Next, we plot in Fig. 4 the empirical cumulative distri-
bution function (CDF) of the SINR performance degradation
percentage (with respect to the proposed sparse-binary opti-
mal s̃), attained by the conventional optimal non-sparse wave-
form ŝ and waveform sIT, calculated by the presented sub-
optimal algorithm for P = 1 and P = 20. For any wave-
form s with ‖s‖2 = 1, SINR degradation percentage is de-
fined as SINR(s̃)−SINR(s)

SINR(s̃) %. Vertically plotted lines show the
average SINR degradation for the three different waveforms
(4 for ŝ, O for sIT (P = 1), and × for sIT (P = 20)).
First, it is most interesting to notice the superiority of the
proposed sparse-binary waveform s̃, compared to the conven-
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Fig. 3. Maximum post-filtering SINR versus sparsity K.
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Fig. 4. Empirical CDF of performance degradation attained
by ŝ and sIT with respect to the proposed optimal sparse-
binary waveform s̃.

tional non-sparse ŝ. In particular, we observe that ŝ attains
at least 20% lower SINR than s̃ with empirical probability
1 and 54% lower SINR on average. On the other hand, the
sparse-binary sIT, generated by the presented suboptimal al-
gorithm with cost O(L4) on P = 1 initialization attains av-
erage SINR degradation of 28% (almost half of that of the
non-sparse optimal ŝ). When the number of initializations in-
creases to P = 20, the average SINR degradation for sIT
reduces to about 6% (one-ninth of that of ŝ). Also, it is worth
noticing that, for P = 20, sIT is optimal (equivalent to s̃)
with empirical probability .6.

In conclusion, in this work, we propose, for the first time
in the literature, maximum-SINR sparse-binary waveforms
and present the first optimal algorithm for their calculation.
In addition, we present a significantly faster suboptimal algo-
rithm for the same problem. Our numerical studies demon-
strate that the proposed optimal sparse-binary waveforms of-
fer clearly superior SINR performance compared to the con-
ventional non-sparse counterparts.
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