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Abstract— In this paper, we are interested in modeling the
diffusion of information in a multilayer network of agents using
a thermodynamic diffusion approach. The state of each agent
is viewed as a topic mixture, to describe his/her resources, and
represented by a distribution over multiple topics. We observe
and learn diffusion-related thermodynamical patterns in the
training data set, and we use the estimated diffusion structure to
predict the future states of the agents. With a priori knowledge
of a fraction of the state of all agents, the problem is shown to
turn into a Kalman predictor problem that refines the predicted
system states using the estimation error of the agents’ states. A
real world Twitter data set is then used to evaluate and validate
our information diffusion model.

Index Terms—Multilayer networks, Kalman-Bucy filter, pre-
dictor, diffusion network.

I. INTRODUCTION

Different topics are discussed/diffused in social networks
and because of the distinct dynamics of these diffusions, agents
in the social networks are affected differently. The temporal
and spatial dynamics of diffusion have been studied through
sequences of activation nodes and observed as spreading
cascades in a network [9].

The information diffusion process models can be classified
into three major groups, probabilistic models, thermodynamic
models, and counting models. NETINF [7], NETRATE [16]
and INFOPATH [8] are the probabilistic models which infer
the underlying diffusion network among information sources
using consecutive hit times of the nodes by a specific cascade.
The main idea behind the thermodynamic models [5,6,13,18]
is that heat will propagate from a warmer region to a colder
region, or gas will move from the region with higher density
to the region with lower density. Modeling the information
as heat or gas, we can write the rate at which information is
changing in agent i as: dψi

dt = D
∑
j A(i, j)(ψj−ψi), ψi(t) is

the state of the ith agent at time t, D is the diffusion constant
which reflects the amount of information passing from on
agent to another agent in a small interval of time, and A(i, j)
is the (i, j) element of adjacency matrix. The counting models
[10] form counting processes to find the number of nodes in
each group of susceptible or infected nodes. SIS [12] and SIR
[17] are two well-known models in this group.

One central challenge in modeling information diffusion is
to understand the structure of the cascades; the existence of
unknown external influence factors and unclear graph connec-
tions obscures this query. In this paper, we propose for the first
time to model the simple diffusion on a general multilayer

network, and apply the model to publication networks and
social media data.

The multilayer network connectivity structure has been pro-
posed and studied in [1, 3, 4, 14, 15], in particular, a two-layer
network was studied in [6] under the Laplacian dynamics.
The information flow following a Laplacian process on a
multilayer network in its most general form, has however, yet
to be studied. A multilayer network (illustrated in Fig.1) takes
into consideration additional connection criteria when the true
connections among the agents are uncertain. For example,
social media such as blogs consist of a set of documents
generated by bloggers over time; these documents may share
some topical similarities despite of their different sources.
It is possible to structure the document similarities into a
relational property as a network of documents. One can then
further associate this connectivity layer with the connection
of bloggers (e.g., according to following-follower connection).
This leads to a multilayer network model where information
diffuses both within a single layer and across layers. The
additional paths due to the multilayer structure, diffuse the
information at a secondary degree, specifically, an absence of a
direct connection between two bloggers may be reestablished
by counting the topical similarities between the documents
they are associated with. We will refer to the resulting network
from a multilayer construction as an interconnected network
of heterogeneous nodes.

In a community-like network of agents with common in-
terest, such as a network of authors with their publications,
online forum community, we have observed diffusion related
thermodynamical patterns. It turns out that the simple diffusion
model on the interconnected network structure is very effective
in predicting the future states of the agents.

The paper is organized as follows: We propose our new
approach in Section II, and present substantiating experimental
results in Section III. We finally provide the concluding
remarks in Section IV.

II. THE PROPOSED METHOD

In closed systems, all changes in the agents’ states are a
result of interaction among the agents in the network. In a
single layer network, a diffusion process based on the heat
equation has been studied in [5, 6, 13, 18]. Independently of
the nodes in a multilayer network be agents or documents, we
generalize the single layer diffusion process to:

dX
dt

= −LX. (1)
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(a) Single layer network (b) Multiplex network (c) Interconnected network

Fig. 1: a) A single layer. Dashed edges show connections among bloggers. b) A multiplex network. The top layer is based on the hyperlink inter-connectivity
of the bloggers, and the bottom layer is the friendship network between the bloggers. The straight inter-layer edges are showing that the bloggers are the
same people in both layers. c) An interconnected network of heterogeneous nodes of agents and documents. The dotted edges are showing which blogger
(agent) has produced which document.

Where X is a N ×T matrix, N being the number of nodes in
a multilayer network, and each row of X is a T -dimensional
state vector for each node. L is a N × N supra-Laplacian
matrix defined in proposition (1).

Proposition 1. We can generally write the supra-Laplacian
matrix of an M layer multiplex network with N nodes in
each layer as Eqn. (2). Where LL is the supra-Laplacian
matrix of the intra-layer connectivity and LI is the supra-
Laplacian matrix of the inter-layer connectivity. LL may be
in turn, written as direct sum of the Laplacian matrices of the
independent intra-layer connectivities:

L = LL + LI , (2)

LL =

M⊕
α=1

D(α)L(α) =


D(1)L(1)

D(2)L(2)

. . .
D(M)L(M)

 .

(3)
The D(i) is the intra-layer diffusion constant of nodes in
layer i, and L(M) is the Laplacian matrix of the intra-layer
connectivity of layer M . The inter-layer supra-Laplacian can
be written as LI =

∑M
α=1(Kα

I −Wα
I ), where the Kα

I is the
diagonal inter-layer degree matrix of layer α, showing the
inter-layer degree of the nodes in layer α and the Wα

I is the
inter-layer connectivity matrix of the nodes in layer α with
the nodes in the other layers. The Kα

I and Wα
I are formally

defined in Eqns. (4 and 5) respectively:

Kα
I = e(α,α) ⊗ (

M∑
β=1β 6=α

D(α,β)K(α,β)), (4)

Wα
I =

M∑
β=1β 6=α

(e(α,β) ⊗ (D(α,β)W(α,β))), (5)

where D(α,β) is the inter-layer diffusion constant of agents
from layer α to agents in layer β, K(α,β) is the diagonal
matrix reflecting the degree of each node in the inter-layer
connectivity between layer α and layer β, W(α,β) quantifies

the inter-layer connectivity of the layer α nodes to the layer
β nodes and e(α,β) is an all 0, M ×M , matrix with an only
1 element in (α, β). ⊗ denotes the kronecker product.

The proof of proposition (1) can be found in the extended
version of the paper [11].

Much of the existing work in information diffusion models
have a limited scope (of agents, documents, parameters) when
predicting the future state of the nodes. More specifically,
agent states may be varied by external sources which are not
captured in the network, or by some agents actions which
may even to some extent, conflict with the model prediction.
Considering an interconnected network with a supra-Laplacian
matrix L, we address the additional auxiliary input, thus
generalizing Eqn. (1) to an open system model as follows:

dX(t) = −LX(t)dt+ ΣdB(t). (6)

B(t) is a T × T matrix, whose columns are T -dimensional
vectors with components as independent standard Brownian
motions of variances σi, and Σ is N × T matrix, and each
row shows the σi vector for agent i. Inspired by the Ornstein-
Uhlenbeck (O.U.) process [19], Eqn. (6) describes the velocity
of the topical-state of the nodes as a Brownian motion in
presence of friction. In other words, to describe the uncertainty
due to external effects, we proceed to view the whole system
as a massive Brownian particle. The drift term (first term in
right-hand side of Eqn. (6)), however, moves the velocity from
a martingale state of σidB(t) towards a consensus (captured
by the drift term). The solution of the differential equation
in Eqn. (6), can be expressed as follows: given the states of
nodes at time t0 we can predict the states at time t1 , t1 > t0
as follows:

X̂(t1) = e−L(t1−t0)X(t0) +

∫ t1

t0

eL(s−t1+t0)ΣdB(s), (7)

where eL(s−t1+t0) is a matrix exponential of a N ×N size.
Our proposed learning procedure aims at determining the

diffusion constants in the supra-Laplacian matrix L as well
as the Σ matrix. To that end, we proceed to minimize the
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Frobenius norm of the difference between X and its predicted
X̂,

arg min
Σ, D1,..

g = ||X(t1)− X̂(t1)||F . (8)

Solving this optimization problem helps us decompose the
predicted matrix into two main components on the right-hand
side of Eqn. (7), the first term representing the interactions
in the network, while the second quantifying the uncertainty
which results from auxiliary inputs into the system.

A. Diffusion Network Estimation (Learning the Supra-
Laplacian Matrix)

The supra-Laplacian matrix L which we use in Eqn. (6) for
state prediction, is the result of the network connectivity (refer
to Eqn. (2)). In practice, hidden connections are pervasive,
introducing uncertainty in the prediction, and thus requiring
additional explicit connections for the information diffusion.
To that end, consider observations of X(t) over t ∈ [0, t1], and
denote x(t) := vec(X(t)), the vectorization of X(t) to obtain a
vector differential system in order to learn the supra-Laplacian
matrix L of Eqn. (6):

ẋ(t) = Λx(t) + w(t) , 0 ≤ t ≤ t1,

where Λ = IT ⊗ (−L), the Kronecker product of T -by-T
identity matrix with (−L) and w(t) is the vectorization of
w(t) = ΣdB(t)

dt .
To that end, the simple cost functional J = 1

2ε
T ε, where

ε = x − x̂, and estimating Λ̂ we have ˙̂
Λ = γ(x − x̂)xT

(derivative of J with respect to x̄), where the estimation
x̂(t + 1) = eΛ̂x(t), and γ > 0 is appropriately chosen as the
scaling gain. In optimization iterations, the estimated value of
Λ̂ at the ith iteration is as follows:

Λ̂i = Λ̂i−1 +
˙̂
Λi−1.

We use Λ̂0 = IT ⊗ (−L), the graph Laplacian of the explicit
following-follower network (as initialization). The learned
Λ may, however, not be exactly structured as IT ⊗ (−L),
due to dependence of topics in the state space, as well as
the nonlinearity and non-homogeneity of the diffusion. The
resulting error ε shall be considered for the estimation of the
noise in the Kalman-Bucy filter as discussed next.

B. A Refined Prediction: Kalman-Bucy Filtering

In prediction applications, the actual states of some of the
nodes are sometimes known, and we want to predict those
of all remaining nodes. An example of this may be seen in
social networks, where states of the hub nodes, such as famous
people or users with less restrictive privacy policies are known
to the public, and one is interested in predicting the states
of other less accessible users. Having partial knowledge of
the states of a fraction of the nodes in the network, changes
the state prediction problem to a Kalman predictor problem,
and helps to refine the predicted states using a Kalman
filter. We propose a Kalman-Bucy filter as the optimal linear
predictor for our system, and write the observation equation

as y(t) = (IT ⊗H)x(t) + v(t), with H as a diagonal indicator
matrix with 1 in all the observed entries, and 0 in all other
entries. Λ having been learned (see above Section), Kalamn-
Bucy equations may be written as:

ẋ(t) = Λ̂x(t) + w(t), (9)
y(t) = Hx(t) + v(t), (10)

where H = IT⊗H and the noises w(t) and v(t) are zero-mean
white (temporally) processes, i.e, E(w(t)w(s)

T
) = Qtδ(t−s),

E(v(t)v(s)
T

) = Rtδ(t − s), E(w(t)v(s)
T

) = 0. By consid-
ering small time intervals in the discretization of the linear
continuous time system (δt = 1), one can write the state
equation as x̄(t+ 1) = F̂x̄(t) + w̄(t), where F̂ = I + Λ̂.

Having Eqn. (10) and x̄(t+ 1) = F̂x̄(t) + w̄(t) as the state
and observation equations respectively, we can predict and
refine the predicted states of the nodes using Algorithm (1).
The ”learning phase” of Algorithm (1) is estimating the supra-

Algorithm 1
Learning phase:

1: x(t)← vec(X(t))
2: Λ̂← IT ⊗ (−L) . Initial state.
3: repeat:
4: x̂(t+ 1)← eΛ̂x(t)

5:
˙̂
Λ← γ(x− x̂)xT

6: Λ̂← Λ̂ +
˙̂
Λ

7: until ||x− x̂||2 < η. . Convergence criteria.
Kalman filter prediction on test data:

1: Re,t ← Rt + HΠt|t−1HT . Updating.
2: ˆ̄xt|t ← ˆ̄xt|t−1 + Πt|t−1HTR−1e,t [ȳt −Hˆ̄xt|t−1]

3: Πt|t ← Πt|t−1 −Πt|t−1HTR−1e,tHΠt|t−1
4: F̂← I + Λ̂
5: ˆ̄xt+1|t ← F̂ˆ̄xt|t . Predicting.

6: Πt+1|t = F̂Πt|tF̂
T

+ Qt

Laplacian matrix Λ̂ (see above Section). The second phase of
the algorithm, is refining the estimated state of the nodes. Note
that Rt is the covariance of the observational error, and ˆ̄xt2|t1
denotes the linear prediction of x̄ at time t2 given observations
up to and including time t1. The state covariance Πt satisfies
the Riccati equation:

Π̇t = Λ̂Πt + ΠtΛ̂
T

+ Qt −GtRtGT
t . (11)

While the Gt is the Kalman gain Gt = ΠtHTR−1t . For
simplicity, we further assumed that the errors in the state
prediction and observation are Gaussian processes.

The designed algorithm shows the discrete time, state update
of the Kalman predictor. The estimated states of the available
nodes, Hx̂(t), are compared with the state of the available
nodes, y(t), as measurements observed over time, to evaluate
the extent of statistical noise and other inaccuracies in predict-
ing phase.
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Fig. 2: (a) Experiment for college professor network with 1000
publication documents. (b) Experiment over Twitter network
with 5000 agents and 8 Hashtags.

III. EXPERIMENTS

Fig. (2a) shows the prediction based on a network of 79
researchers. A three-layer network is formed with the first
layer showing if two researchers have ever published in the
same venue or not. The second layer being the research group
membership of these researchers and the third layer showing
the similarity network between the published papers (extracted
by LDA [2] topic modeling of the abstract of the papers with
dimension 10). The states of the agents are 10-dimensional
topical vectors which are the mean of the topical representation
of the documents produced by the agents. Over time, more
documents are getting added and the topical states of agents
are changing. The error measure used in all the experiments
is the Frobenius norm of the difference of the estimated states
of the nodes and ground truth states of the nodes normalized
by the Frobenius norm of the ground truth matrix. As may be
seen in Fig. (2a), the prediction method based on a three-layer
network achieves a lower error than the prediction based on a
single-layer network. Note, the single-layer network does not
help in predicting the topical states of the agents. The reason
is that there are only 79 agents in this experiment, and the
co-authorship network between the agents is not particularly
suited to predict the future state of the agents.

Fig. (2b) is an experiment based on 5000 Twitter users.
The first layer is a network among users and the second layer
is a network between eight Hashtags used in June 2009. The
Hashtags are as follows: #jobs, #spymaster, #neda, #140mafia,
#tcot, #musicmonday, #Iranelection, #iremember. These show
the similarities of the Hashtags by counting and normalizing
the number of times they have appeared in the same tweet.
The average prediction improvement achieved by the two-layer
network is about 13 percent. The prediction by first estimating
the Laplacian matrix, shows 15 percent improvement over the
single layer prediction method.

Fig. (3) displays the results of an experiment in a small
single layer dataset with 300 Twitter agents available. Figs.
(3a), (3b), (3c) and (3d) are the same experiments with differ-
ent observation sizes of 10 percent, 15 percent, 20 percent
and 25 percent of states of all the agents in the network
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Fig. 3: Experiment over Twitter network with 300 agents.
Predicting the state of the agents using a fixed Laplacian
matrix, using an estimated Laplacian matrix, and Prediction
using Kalman filter with 10 percent, 15 percent, 20 percent,
and 25 percent of observation of state of all the agents in Figs.
(a), (b), (c) and (d) respectively.

respectively. As may be seen in the figures, the prediction
error based on the estimated Laplacian matrix yields a lower
error than fully trusting the connectivity structure in the
network. This as expected, is due to static connectivity network
(usually demonstrates the physical or online relation among
the agents), falling short on affecting the actual underlying
diffusion structure on the network. Having a prior partial
knowledge of the agents enabled us to use a Kalman predictor
to further refine our prediction.

IV. CONCLUSIONS

In this paper, we proposed a technique to model and predict
node states in a multilayer network. The actual diffusion
network was learned by looking at previous diffusion data
and applied to predicting the future states of agents in the
network. Having partial observation of the state of the agents
changes the state-space dynamics model to a Kalman filter
problem. The Kalman filter allows us to further refine our
state prediction by learning over the prediction error of the
observed subset. In future work, we will explore the informa-
tion diffusion problem with a goal to develop necessary tools
to analyze diffusion in more complex network structures.
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Perez-Vicente, Yamir Moreno, and Alex Arenas, Diffusion dynamics on
multiplex networks, Physical review letters 110 (2013), no. 2, 028701.

[7] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause, In-
ferring networks of diffusion and influence, Proceedings of the 16th
acm sigkdd international conference on knowledge discovery and data
mining, 2010, pp. 1019–1028.

[8] Manuel Gomez Rodriguez, Jure Leskovec, and Bernhard Schölkopf,
Structure and dynamics of information pathways in online media,
Proceedings of the sixth acm international conference on web search
and data mining, 2013, pp. 23–32.

[9] Adrien Guille, Information diffusion in online social networks, Proceed-
ings of the 2013 sigmod/pods ph. d. symposium, 2013, pp. 31–36.

[10] Herbert W. Hethcote, The mathematics of infectious diseases, SIAM
review 42 (2000), no. 4, 599–653.

[11] S. Mahdizadehaghdam, H. Wang, H. Krim, and L. Dai, Information Dif-
fusion of Topic Propagation in Social Media, ArXiv e-prints (February
2016), available at 1602.04854.
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