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Abstract—Degrees of freedom (DoF) is studied in the downlink
of a heterogenous wireless network modeled as a two-layered
interference network. The first layer of the interference network
is the backhaul layer between macro base stations (MBs) and
small cell base stations (SBs), which is modeled as a Wyner
type linear network. The second layer is the transmission layer
between SBs and mobile terminals (MTs), which is modeled as
a linear Wyner LT network. The SBs are assumed to be half-
duplex, thus restricting the per user degrees of freedom (puDoF)
in the system to 1/2. It is established that the optimal puDoF of
1/2 can be achieved in the linear network with sufficient number
of antennas using only interference avoidance schemes. For the
case of higher connectivity in the transmission layer, it is shown
that the optimal puDoF is achieved by sending an appropriate
linear combination to the SB to zero-force interference at the
intended user. These results are also extended to a more realistic
hexagonal cellular model.

Index Terms—interference management, coordinated mul-
tipoint transmission (CoMP), half-duplex relays, interference
avoidance, heterogeneous networks.

I. INTRODUCTION

To meet the increasing demand for mobile traffic, hetero-
geneous networks are envisioned to be a key component of
future cellular networks [1]. Heterogeneous networks enable
flexible and low-cost deployments and provide a uniform
broadband experience to users anywhere in the network [2].
Managing interference in heterogeneous networks is crucial in
order to achieve higher data rates for users. We consider the
downlink of a heterogeneous network with KB macro base
stations (MBs), K small cell base stations (SBs) and K mobile
terminals (MTs) with K = S ×KB for an appropriate S. It
is assumed that the MBs and the SBs operate on the same
frequency band.

The SBs act as relays between MBs and MTs. We consider
a linear interference model for both the backhaul and the
transmission layer. The channel between the macro and the
SBs is modeled as a Wyner type network while the channel
between SBs and MTs is modeled as a Wyner LT model.
The dependence of DoF in this network on several factors
such as the number of antennas at the MB, interference in
the backhaul and transmission layers is investigated in this

work. These insights are applied to a practical model with the
transmission layer modeled as a hexagonal cellular network.

The DoF in locally connected linear networks was studied
in [3], [4], [5] using cooperation under maximum transmit
set size cooperation constraints. We use insights from these
works to characterize the DoF in the transmission layer. In the
schemes of [3]-[6], the messages of multiple users are available
at some of the transmitters. This requires multiple time-slots
in the backhaul layer in our setting. The key observation here
is that the SBs use the knowledge of multiple messages to null
the interference at the intended MT. Hence it is sufficient if
the MBs send linear combinations of the messages to the SBs.
This would require that at each MB, the channel between SBs
and the corresponding MTs is known.

A two-layered interference network modeled as a K×K×K
relay channel with each layer as a K-user interference channel
with full connectivity was considered in [8]. Using aligned-
network-diagonalization, the maximum sum-DoF of K was
achieved. The sum-DoF was studied for the case of K = 2
i.e., 2×2×2 in [9] under restriction to linear schemes, and was
shown to be 4/3. In contrast to these schemes, we consider a
broadcast channel in the first layer and local connectivity in
both layers. We also restrict ourselves to more practical zero-
forcing schemes. To the best of our knowledge, there has been
no prior work on a DoF analysis for a two-layered network of
the kind we consider here.

II. SYSTEM MODEL AND NOTATION

We consider a heterogeneous wireless network with MBs,
SBs and MTs. It is assumed that MBs do not directly serve
MTs and do not cause interference at MTs. We assume that
the SBs act as half-duplex relays between the MBs and the
MTs. There are two layers in this network, the backhaul layer
between MBs and SBs and the transmission layer between
SBs and MTs.

A. Transmission Layer

Consider the transmission layer with K SBs and MTs. Let
K denote the set {1, ...,K}. Each SB is equipped with a single
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antenna. In the transmission layer, the channel gain between
SB j,∀j ∈ K and MT i,∀i ∈ K is denoted by hTx

ji . At each
MT i, the received signal yTx

i is given by

yTx
i (t) = hTx

ii (t)x
Tx
i (t) +

∑
j∈Ii

hTx
ji (t)x

Tx
j (t) + zTx

i (t), (1)

where t denotes the time-slot, xTx
j (t) denotes the signal trans-

mitted by SB j under an average transmit power constraint,
zTx
i (t) denotes the additive white Gaussian noise at MT i,
hTx
ji (t) denotes the channel gain coefficient from SB j to MT
i, and Ii denotes the set of interferers at MT i.

The cellular model presented by Wyner [10] was extended
in [5] to a locally connected linear interference network with
connectivity parameter LT . The transmission layer is assumed
to be a local Wyner LT model with K users. The cells
are located on an infinite linear equi-spaced grid and each
transmitter is associated with a single user. Here LT denotes
the number of dominant interferers per user, where each
user observes interference from dLT

2 e preceding and bLT

2 c
succeeding transmitters. The Wyner LT model is illustrated
in Figure 2 and the channel coefficients are given by

hTx
ji (t) 6= 0 iff i ∈ {j−bLT

2
c, . . . , j−1, j, j+1, . . . , j+dLT

2
e}.

B. Backhaul Layer

The backhaul layer is assumed to be a linear model with
connectivity LB . Let Si denote the set of S consecutive
SBs where Si = {(i − 1)S + 1, . . . , (i)S}. Each MB i is
associated with a set Ai of S + LB consecutive SBs where
Ai = Si−1({S−bLB

2 c, . . . , S})∪Si∪Si+1({1, . . . , dLB

2 e }).
Transmission from MB i to any SB in Si causes interference
at bLB

2 c SBs above and at dLB

2 e SBs below the set Si. Let N
denote the number of antennas at each MB.

The channel vector between MB i and SB j at time-slot t
is denoted by hB

i,j(t). The channel model for backhaul layer
is given by hB

i,j(t) 6= 0 iff j ∈ Ai. Let the channel gain
matrix corresponding to MB i, HB

i (t) ∈ C(N)×(S+LB) =
[hB

i,Si−1(S−b
LB
2 c)

(t), ...,hB
i,Si(S)(t), . . . ,h

B

i,Si+1(d
LB
2 e)

(t)]

in the backhaul layer where the jth column corresponds
to the channel coefficients from MB i to SB j. Also let
xB
i (t) ∈ CN×1 to be the transmitted signal vector from MB
i and zBk (t) denotes the additive white Gaussian noise at SB
k. The received signal at kth SB served by MB i is given by,

yBk (t) = (hB
i,k(t))

TxB
i (t) +

∑
j 6=i

(hB
j,k(t))

TxB
j (t) + zBk (t).

Let Ri(t) ⊆ Ai denote the set of SBs receiving messages
from MB i in a particular time-slot t.

Local channel state information is assumed to be available at
MBs and SBs. All channel coefficients that are not identically
zero are assumed to be drawn independently from a continuous
joint distribution. The system model is illustrated in Figure 1.

Fig. 1: Two-layered network with: (a) S = 5 and LB = 1 in
the backhaul layer, and LT = 3 in the transmission layer; and
(b) S = 3 and LB = 2 in the backhaul layer, and LT = 2 in
the transmission layer.

C. Capacity and Degrees of Freedom

Let P be the average transmit power constraint at each SB
and the transmit power per antenna at a MB. LetWi denote the
alphabet for Wi, where Wi denotes the message for MT i. The
rates Ri(P ) =

log|Wi|
n are achievable iff the error probabilities

of all messages can simultaneously be arbitrarily small for
large n, using an interference management scheme. The degree
of freedom (DoF) di,∀i ∈ K is defined as

di = lim
P→∞

Ri(P )

logP
. (2)

DoF is the number of interference free sessions in a multi-user
channel at asymptotically high signal-to-noise ratio (SNR).
The maximum achievable sum DoF η(K) in a channel with K
users (MTs) is defined as η(K) = max

D

∑
i∈K

di. where D denotes

the closure of the set of all achievable DoF tuples. Then the
maximum achievable per user DoF (puDoF) is defined as

τ = lim
K→∞

η(K)

K
. (3)

III. DOF ANALYSIS FOR LT = {1, 2}
In this section, we consider the case where the connectivity

in the transmission layer LT ≤ 2 while LB = 1. We present
upper bounds on the achievable puDoF which hold for general
LT and LB . Similar achievability schemes can be used for
higher values of LT and LB .

Note that at any MB i, N1 + 1 antennas are sufficient
in order to send messages to N1 SBs (|Ri| = N1) and to
null the interference at SB z. Let X ∈ CN1+1 denote the
transmitted signal vector at MB i, H denote [HB

i,Ri
,hB

i,z],
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and W ∈ CN1+1 denote the vector containing the intended
messages to Ri appended with zero at the end. Then we have
HXT = WT . From our assumptions, H is full rank almost
surely and a solution for X is obtained.

Theorem 1: The following bounds hold for τ , when LB = 1,
LT ∈ {1, 2},

τ ≥


N
S for N < S/2

1
2 (1−

1
S ) for N = S/2 for S even

1
2 for N > S/2

(4)

τ ≤ min(
N

S
,
1

2
). (5)

Proof: We present the achievable scheme in order to
show the bounds (4). The converse (5) is omitted due to
space constraints and can be found in the full version of this
paper [12]. In the transmission layer for Wyner model with
LT ∈ {1, 2}, by deactivating alternate transceiver pairs, the
remaining messages can be sent interference free as shown in
Figure 2. Thus, a puDoF of 1/2 is achieved if the corresponding
messages are available at the active SBs.

Case 1: N > S
2 .

A) When S is odd, our achievable scheme uses only
S+1
2 antennas at an MB. Consider the following message

assignment for each time-slot t where t is odd.

Ri(t) =
Si({1, 3, ..., S}) for i odd
Si({2, 4, ..., S − 1}) for i even.

Fig. 2: Scheme achieving puDoF = 1/2 in the transmission
layer with LT = 2. The red boxes indicate deactivated
transceivers.

When i is even, SB Si(1) is not active in this time-slot.
Only when i is odd, Si(1) observes interference from the
transmissions of MB i− 1. MB i− 1 needs S−1

2 antennas for
sending messages and one antenna for nulling the interference
at SB Si(1). Thus at the end of each odd time-slot, messages
are available at alternate SBs and a puDoF of 1/2 is achieved.
The assignment is reversed when t is even and the achievability
follows similarly.

B) The proof for S is even is omitted due to space
constraints and can be found in the full version of the paper
[12].

Case 2: N < S
2 . In this case, S ≥ 2N+2 or S ≥ 2N+1 for

even and odd respectively. Hence in each cluster, two disjoint

sets of N SBs are served in consecutive time-slots while
the first SB of the cluster is inactive. Consider the following
message assignment for each time-slot t when t is odd.

Ri(t) =
Si({3, 5, ..., 2N + 1}) for i odd
Si({2, 4, ..., 2N}) for i even.

This assignment is reversed when t is even. The first SB in
each cluster is not served at all and hence there is no inter-
ference in the backhaul layer. In each time-slot, N messages
among every S users are sent interference-free, achieving a
puDoF of N

S .
Case 3: N = S

2 . The proof is omitted due to space
constraints and can be found in the full version of our paper
[12].

The upper bounds in Equation (5) hold in general for all
possible achievable schemes, but the maximum puDoF can
be achieved by simple interference avoidance schemes except
for the case N = S

2 when LT ∈ {1, 2}. The achievable
schemes are illustrated in Figure 3. The green and orange
arrows indicate the transmissions in consecutive time-slots and
blue, the nulling beam. Even for a general LB , by employing
a sufficiently large number of antennas N ≥ dS2 e+LB at the
macro base stations, the interference in backhaul layer can be
eliminated and a puDoF of 1/2 can be achieved.

Fig. 3: Achievable schemes for the network with LB = 1 and
LT = 2: (a) puDoF = 1/2 with S = 3 and N = 2; and (b)
puDoF = 2/5 with S = 5 and N = 2.

IV. ACHIEVABLE SCHEMES FOR GENERAL LT

The optimal puDoF for a given number of antennas cannot
be achieved for higher values of LT using only interference
avoidance schemes without the use of cooperation. For ex-
ample, when LT = 3, with restriction to only ZF schemes
without cooperation at the SBs, we have τ ≤ 2

5 in the
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transmission layer even for a large N from [5]. We consider
cooperation among the SBs and show that the optimal puDoF
can be achieved for LT ∈ {3, 4} using only interference
avoidance schemes. For cooperation, multiple messages need
to be available at SBs for transmission in a particular time-
slot. This requires multiple time-slots for transmission by the
MBs in the backhaul layer which leads to ineffective use of
resources. The SBs use the knowledge of messages available
only for zero-forcing, and, thus, it suffices to have a linear
combination of messages at the SBs. This would require only
one time-slot for transmission in the backhaul layer. However,
this would require that at each MB, the channel between SBs
and the corresponding MTs is known. While this might require
a large amount of CSI to be present at each MB, this would
be justified if the coherence time is large enough.

Remark 1: In the Wyner LT model, if groups of A SB-
MT pairs are separated by F where F ≥ dLT

2 e deactivated
pairs, then there is no interference between the groups. If all
A messages are sent such that the interference at each MT is
zero-forced, a puDoF of A/(F+A) is achieved if the messages
are available at the SBs.

Theorem 2: When LB = 1 and bS2 c ≥ d
LT

2 e, equations (4)
and (5) hold for τ .

(a) (b)

Fig. 4: Achievable schemes for the network with LB = 1,
LT = 3 and S = 5. In (a), N = 2, N < S/2 and puDoF =
2/5 is achieved. In (b), N = 3, N > S/2 and puDoF = 1/2
is achieved.

Proof:
A) N > S

2 is equivalent to N ≥ bS2 c+ 1. For all i, let

Ri(t) =
Si({1, . . . , bS2 c}) for t odd
Si({bS2 c+ 1, . . . , S}) for t even.

In even and odd time-slots, bS2 c + 1 and bS2 c antennas
respectively at each MB i are used to send linear combinations

to the SBs and in an odd time-slot one antenna is used to ZF
interference at Si+1(1). From remark 1, it follows that the
puDoF is 1/2.

B) N < S
2 is same as N ≤ dS2 e − 1. For all i, let

Ri(t) =
Si({2, . . . , N + 1}) for t odd
Si({dS2 e+ 1, . . . , dS2 e+ 1 +N}) for t even.

In each time-slot, N antennas at each MB i send linear
combinations to the SBs. The first SB in each cluster is
always inactive. The first MT in each cluster is served by an
appropriate SB in the cluster to maintain fairness. Each group
of N SBs is separated by S−N SBs and hence from remark
1, puDoF is N/S.

C) N = S
2 . The proof is omitted due to space constraints

and can be found in the full version of the paper [12].

The achievable schemes are illustrated in Figure 4. We note
that for a general LB , a puDoF of 1/2 can be achieved by
employing a sufficient number of antennas (N ≥ bS2 c+ LB).

V. CELLULAR MODEL

We have extended this work to include the more realistic
hexagonal sectored cellular model (e.g., used in [11]) for the
transmission layer. We assume only local interference and
no intra-cell interference in the transmission layer. For the
backhaul layer, each MB is associated with a 3 × 3 block
of SBs and transmissions in each block cause interference at
only the neighboring SBs.

Theorem 3: With N ≥ 13, a puDoF of 1/2 can be achieved
using only zero-forcing schemes.

The proof and additional details about the system model can
be found in [12]. We anticipate that having a large number
of antennas at the MBs will be realistic in future generation
wireless systems with the emergence of massive MIMO [7].

VI. CONCLUSIONS

In this paper we analyzed the DoF for a linear Wyner
type model for a two-tier heterogeneous wireless network.
The system model, while being somewhat simplistic, captures
important features of such networks, and leads to new insights
for designing more realistic cellular networks. For the linear
two-tier heterogeneous wireless network, we showed that
with sufficient number of antennas, a puDoF of 1/2 can be
achieved using only zero-forcing schemes by sending linear
combinations from MBs to their corresponding SBs so that the
interference at each MT is zero-forced. These insights apply
to a more realistic hexagonal cellular network where a puDoF
of 1/2 can be achieved with a sufficient number of antennas
using only interference avoidance schemes.
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