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ABSTRACT

We propose a novel power control algorithm for the mini-
mization of the peak load in the widely used load coupled
network model, which is an abstract model able to capture
the behavior of current and possibly future wireless networks.
We first prove that the solution to the optimization problem
we pose here requires all base stations with the same load.
This necessary condition for optimality gives rise to a solver
based on a bisection algorithm that requires an oracle able
to answer whether a probed load is greater than the optimal
value. By exploiting known properties of concave mappings,
we devise an iterative oracle that, with a very mild assump-
tion, provably gives the correct answer with a finite number
of iterations. Simulations in an ultra-dense network show that
the proposed algorithm can decrease the peak load by around
40% when compared to the peak load induced by the com-
mon approach of fixing the power of every base station to the
maximum value.

Index Terms— Network utility optimization, power con-
trol, radio resource management, nonlinear systems

1. INTRODUCTION

Fifth-generation (5G) networks are envisioned to use multi-
ple access schemes that divide the time-frequency grid into
basic units called resource blocks [1], which are typically al-
located to users based on different optimization criteria such
as total throughput maximization, proportional fairness, and
others. This approach is similar to that currently used in com-
mercial networks based on the orthogonal frequency-division
multiple access (OFDMA) technology. Therefore, we can
reasonably expect that radio resource management (RRM)
algorithms for future 5G networks to be strongly based on
those proposed for OFDMA networks. This observation par-
tially explains the growing body of literature on RRM al-
gorithms for OFDMA systems. Unfortunately, in OFDMA
networks, many problems addressed by RRM algorithms are
known to be huge instances of NP-hard problems [2], so inter-
ference models able to capture the behavior of OFDMA-like
networks, while giving rise to tractable mathematical prob-
lems, have been the focus of many recent studies.

In particular, algorithms based on the widely used load
coupled interference model described in [3–9], which is the
model considered in this study, have successfully addressed
many network optimization tasks, including data offloading
[7], load balancing [6], antenna tilt optimization [9], energy
savings [4,5,8,10], and utility optimization [11], to cite a few.
One of the main advantages of these algorithms is that they
focus on the long-term optimization of wireless resources
(e.g., power, rates, antenna tilts, etc.) by considering only
the average resource block usage (i.e., the load) at the base
stations. The influence of short-term mechanisms for the as-
signment of resource blocks to users is simplified, and as a
result the dimensionality of the optimization problem is kept
at reasonable levels.

With the assumptions of the load coupled model, a re-
cent study [8] (see also [5]) has shown that the minimum sum
(transmit) power able to support the rates demanded by users
induces base stations transmitting at full load. Despite this
good theoretical property of fully loaded networks, system
engineers may prefer to leave the load at low levels for var-
ious reasons, including avoiding problems caused by the va-
garies of the requested rates, or being able to accommodate
new users without overly complex handover schemes.

Against this background, in this study we start by pos-
ing an optimization problem that has the objective of mini-
mizing the peak load observed in the network by means of
power control with fixed rate requirements. We show a sim-
ple condition that guarantees the existence of a unique solu-
tion to this min-max optimization problem. In addition, we
prove that the solution is characterized by two main proper-
ties: (i) the load is the same at every base station and (ii)
at least one base station transmits at full power. In particu-
lar, the former property gives rise to a simple solver based
on a bisection algorithm that requires an oracle able to an-
swer whether a given load is greater than the optimal value.
We exploit known properties of concave mappings to develop
an oracle that gives the correct answer with a finite num-
ber of iterations, unless the probed load is exactly the opti-
mal load, which is unlikely to happen in practice. Never-
theless, even in this unlikely case, the oracle has a stopping
criterion with a strong theoretical justification. We evalu-
ate the resulting algorithm for load minimization in an ultra-
dense network mimicking the stadium scenario proposed by
the METIS project [12], a large European project involving
key players in the wireless industry.

As mentioned above, the proposed algorithm is related to
those in [5,8], but it differs in the following main aspect. One
of the main applications of the algorithms in [5, 8] is to com-
pute the power allocation inducing the maximum load at ev-
ery base station in order to save energy. In this sense, the load
at base stations is not an optimization variable as considered
here. The load is a given parameter that takes its maximum
value. Algorithms for load optimization in load coupled net-
works have also been proposed in [6], but that study focuses
on the user-base station assignment mechanisms, and no al-
gorithm for power control is considered.

2. SYSTEM MODEL

We first establish some of the less common notation and defi-
nitions used in this paper. We denote by R+ and R++ the sets
of non-negative and positive reals, respectively. For (x,y) ∈
RM × RM , vector inequalities such as x ≥ y should be
understood as coordinate-wise inequalities. A mapping T :
RM+ → RM++ is said to be a positive concave mapping if, for
every (x,y) ∈ RM+ × RM+ and every α ∈ ]0, 1[, we have
T (αx+ (1− α)y) ≥ αT (x) + (1− α)T (y).

We now briefly review the downlink load coupled net-
work model studied in [4–9]. Given a unit of time, we divide
the time and frequency grid into K ∈ N units called resource
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blocks. Users belonging to the same base station do not share
resource blocks, but different base stations can transmit data
at the same resource block. This transmission mechanism
causes the well known phenomenon of intercell interference.
The sets N := {1, . . . , N} and M := {1, . . . ,M} rep-
resent, respectively, the set of N users and M base stations
in the network. The set Ni ⊂ N , assumed nonempty, de-
notes the set of users connected to base station i ∈ M. The
pathloss between base station i ∈ M and user j ∈ N is
given by gi,j ∈ R++. The power vector and the load vec-
tor are given by, respectively, p = [p1, . . . , pM ] ∈ RM++

and ρ = [ρ1, . . . , ρM ] ∈ RM++, where the ith coordinate
of these vectors correspond to the power per resource block
or the load of base station i ∈ M. In the load coupled
model, load is the long-term fraction of resource blocks used
for data transmission. This model assumes uniform trans-
mit power per resource block, and it also assumes that all
resource blocks experience the same (long-term) pathloss.
Therefore, the achievable rate of each resource block used
for the link connecting base station i ∈ M to user j ∈ N is
given by [3–9]:

ωi,j(ρ,p) = B log2

(
1 +

pigi,j∑
k∈M\{i} ρkpkgk,j + σ2

)
,

where σ2 ∈ R++ is the noise per resource block and B ∈
R++ is the bandwidth of each resource block. Denoting by
dj ∈ R++ the data rate requested by user j ∈ N , for a
given power allocation p ∈ RM++, we obtain the load at the
base stations by solving the following system of nonlinear
equations [3, 4, 9, 13]:

ρ1 = f1(ρ,p)
...

ρM = fM (ρ,p)

(1)

where each fi : RM+ × RM++ → R++, i ∈ M, is the contin-
uous function of two vectors given by

fi(ρ,p) :=
∑
j∈Ni

dj
Kωi,j(ρ,p)

. (2)

Intuitively, each term of the sum in (2) is the fraction of
resource blocks that user j requests from base station i to
achieve the rate dj . Given p ∈ RM++, the load ρ? ∈ RM++

solving the system in (1) (if a solution exists) is the fixed
point of the positive concave mapping given by Tp : RM+ →
RM++ : ρ 7→ [f1(ρ,p), . . . , fM (ρ,p)] [4, 9, 14]; i.e., ρ? ∈
Fix(Tp) := {ρ ∈ RM+ | ρ = Tp(ρ)}. We recall that the set
Fix(Tp) is a singleton if not empty [4]. 1

Instead of computing the load for a given power alloca-
tion, the algorithm for peak load reduction proposed in this
study requires an efficient method to compute the power allo-
cation inducing a given load. As proved in [5, Proposition 1],
the power allocation p? ∈ RM++ inducing the load ρ ∈ RM++

is the fixed point of the positive concave mapping given by
Pρ : RM+ → RM++ : p 7→ [Pρ,1(p), . . . , Pρ,M (p)], where

Pρ,i(p) :=



pi
ρi

∑
j∈Ni

dj
Kωi,j(ρ,p)

, if pi 6= 0

∑
j∈Ni

dj ln 2

KBgi,jρi

( ∑
k∈M\{i}

ρkpkgk,j + σ2

)
,

otherwise;

i.e., p? ∈ Fix(Pρ) := {p ∈ RM+ | p = Pρ(p)}. We note

1If (1) does not have a solution, or if a solution ρ? satisfies
‖ρ?‖∞ > 1, then we obtain the useful information that the traffic
demand cannot be satisfied by the network configuration. In particu-
lar, with ‖ρ?‖∞ > 1, we can rank base stations according to their
nonserved traffic demand [13].

that the set Fix(Pρ) is also a singleton is not empty [5, 14].
Furthermore, from the definitions of the mappings, we verify
that ρ? ∈ Fix(Tp?) if and only if p? ∈ Fix(Pρ?).

We end this section with two technical results that are
used in the proofs of the main results in the next section:

Fact 1. [8, Theorem 2] (see [5] for an alternative proof)
Assume that ρ′ ∈ Fix(Tp′) 6= ∅ for some p′ ∈ RM++. Then,
for every ρ′′ ≥ ρ′ with ρ′ 6= ρ′′, the mapping Pρ′′ has a
unique fixed point p′′ ∈ RM++ satisfying p′′ < p′.

Fact 2. [7] If there exists at least one p ∈ RM++ for which
Fix(Tp) 6= ∅, then Fix(Tp) 6= ∅ for every p ∈ RM++.

3. THE PROPOSED ALGORITHM

The objective of the proposed algorithm is to obtain the power
allocation minimizing the maximum observed load in the net-
work (without any changes in the rate demands or user-base
station assignments). Formally, the optimization problem is
given by:

Problem 1.
min.(ρ,p)∈RM

++×RM
++

‖ρ‖∞
s.t. p ∈ Fix(Pρ)

‖p‖∞ ≤ pmax,
(3)

where ‖·‖∞ denotes the standard l∞ norm, and pmax ∈ R++

is the maximum allowed transmit power.

Note that the first constraint in (3) simply states that the
power allocation should induce the optimal load. To derive a
simple algorithm able to solve Problem 1, we start with the
following result:

Proposition 1. If (ρ?,p?) ∈ RM++×RM++ solves Problem 1,
then both conditions hold:

(i) ‖p‖∞ = pmax; and

(ii) there exists c? ∈ R++ such that ρ? = c?1.

Proof. We prove (i) and (ii) by obtaining a contradiction.
(i) Assume that the tuple (ρ′,p′) ∈ RM++ × RM++

solves Problem 1 and that ‖p′‖∞ < pmax. For α :=
pmax/‖p′‖∞ > 1, we have ‖αp′‖∞ = pmax. There-
fore, we can verify from the definition of the mapping Tp
that Tαp(ρ) < Tp(ρ) for every (p,ρ) ∈ RM++ × RM++.
In particular, we have Tαp′(ρ′) < Tp′(ρ

′) = ρ′. Now
use [4, Fact 3.2 and 3.3] to verify that ρ′′ ∈ Fix(Tαp′) 6= ∅
and that ρ′′ < ρ′. In summary, we have just proved that
(ρ′′, αp′) satisfies all constraints of Problem 1 and that
‖ρ′′‖∞ < ‖ρ′‖∞. These observations contradict optimality
of (ρ′,p′), and the proof is complete.

(ii) Denote by (ρ′,p′) ∈ RM++ × RM++ the solution to
Problem 1, and define [ρ′1, . . . , ρ

′
M ] := ρ′. Now assume that

there exists i ∈ M such that ρ′i < ‖ρ′‖∞. For this base sta-
tion i ∈M, as a result of Fact 1, there exists a power alloca-
tion p′′ ∈ RM++ satisfying p′′ < p′ ≤ pmax1 that increases
the load ρ′i to the value (ρ′i + ‖ρ‖∞)/2 > ρ′i while keeping
the same load at every other base station. Denote this new
load by ρ′′ ∈ Fix(Tp′′). Note that ‖ρ′′‖∞ = ‖ρ′‖∞ by
construction, so (ρ′′,p′′), which satisfies all constraints of
the problem, is also optimal because this tuple achieves the
minimum of the cost function in (3). However, the inequal-
ity ‖p′′‖∞ < pmax contradicts (i), so the value ‖ρ′′‖∞ =
‖ρ′‖∞ cannot be the minimum value achieved by the cost
function of the optimization problem. This result contradicts
optimality of (ρ′,p′) ∈ RM++ × RM++.

Now, consider the following optimization problem:

3730



Problem 2.
min.(c,p)∈R++×RM

++
c

s.t. p ∈ Fix(Pc1)
‖p‖∞ ≤ pmax,

(4)

where ‖ · ‖∞ denotes the standard l∞ norm, and pmax is the
maximum allowed transmit power.

Problem 1 and Problem 2 are formally equivalent in the
sense that, by Proposition 1(ii), the tuple (c?,p?) ∈ R++ ×
RM++ solves Problem 2 if and only if the tuple (c?1,p?) ∈
RM++×RM++ solves Problem 1. For ease of reference, we say
that a tuple (c,p) ∈ R++ × RM++ is feasible to Problem 2 if
and only if p ∈ Fix(Pc1) and ‖p‖∞ ≤ pmax.

The proposed algorithm to solve Problem 2 is based on
the following key observation:

Proposition 2. (i) If (c′,p′) ∈ R++ × RM++ is feasible to
Problem 2, then, for every c′′ ≥ c′, there exists p′′ ∈ RM++

such that (c′′,p′′) ∈ R++ × RM++ is also feasible.
(ii) If Problem 2 has a solution, then the solution is

unique.
(iii) Let F ⊂ R++ ×RM++ be the set of feasible tuples to

Problem 2. If there exists p ∈ RM++ such that Fix(Tp) 6= ∅,
then F 6= ∅.

(iv) Problem 2 has a solution if and only if there exists
p ∈ RM++ for which Fix(Tp) 6= ∅.

Proof. (i) Immediate from Fact 1.
(ii) If c? ∈ RM++ is the optimal load to Problem 2, and

both (c?,p1) and (c?,p2) solve Problem 2 with p1 6= p2,
then {p1,p2} ⊂ Fix(Pc?1), and this relation contradicts that
the set Fix(Pc?1) is a singleton if not empty.

(iii) Let p ∈ RM++ be such that Fix(Tp) 6= ∅. By Fact 2,
we know that Fix(Tp) 6= ∅ for every p ∈ C := {p ∈
RM++ | ‖p‖∞ = pmax} 6= ∅. Choose p′ ∈ C arbitrarily,
and let ρ′ ∈ Fix(Tp′) 6= ∅. For any scalar c′′ satisfying
c′′ > ‖ρ′‖∞, we have as a consequence of Fact 1 that p′′ ∈
Fix(Pc′′1) 6= ∅ and that 0 < p′′ < p′ ≤ pmax1. In other
words, we have just proved that (c′′,p′′) ∈ F , so F 6= ∅.

(iv) If (c?,p?) ∈ R++ × RM++ solves Problem 2, then
p? ∈ Fix(Pc?1) ⇔ c?1 ∈ Fix(Tp?), which shows that
Fix(Tp?) 6= ∅, and one direction of the proof is complete.
Conversely, assume that ρ′ ∈ Fix(Tp′) 6= ∅. By (iii), we
know that the set F ⊂ R++ × RM++ of feasible tuples is
nonempty. Denote by L := {c ∈ R++ | (c,p) ∈ F} 6= ∅
the set of feasible loads, and let c? := inf L ≥ 0. We
can construct with the elements of the set L a monoton-
ically non-increasing sequence {cn}n∈N ⊂ L satisfying
limn→∞ cn = c?. Now consider the vector sequence {pn ∈
Fix(Pcn1)}n∈N ⊂ RM++, and note that Fix(Pcn1) 6= ∅ and
that pn ∈ B := {p ∈ RM+ | ‖p‖∞ ≤ pmax} for every
n ∈ N because (cn,pn) ∈ F . Furthermore, by Fact 1
and monotonicity of {cn}n∈N, the bounded vector sequence
{pn}n∈N ⊂ B ∩ RM++ is monotonically nondecreasing in
each coordinate, so it converges to a vector p? ∈ RM++.
Moreover, since B ⊂ RM is a closed set and {pn}n∈N ⊂ B,
we also have p? ∈ B. Now, by the definition of load, we
have cn1 = Tpn(cn1) = [f1(cn1,pn), . . . , fM (cn1,pn)],
where fi, i ∈ M, is the continuous function with domain
RM+ × RM++ defined in (2). Therefore,

c?1 = lim
n→∞

cn1 = lim
n→∞

[f1(cn1,pn), . . . , fM (cn1,pn)]

= [f1(c?1,p?), . . . , fM (c?1,p?)] = Tp?(c?1) > 0,

which implies that c? > 0 and that p? ∈ Fix(Pc?1) ⊂ B ∩
RM++. This result proves that the infimum value c? for the
cost function in Problem 2 is achieved for the feasible tuple

(c?,p?) ∈ R++ × RM++ constructed above, and the proof is
complete.

In words, Proposition 2(iv) simply states that, if a net-
work is able to support the current rate requirements, then
Problem 1 has a solution. In addition, Proposition 2(i) sug-
gests the use of the bisection algorithm to obtain the min-
imum feasible uniform load c?1. The idea is to devise an
oracle able to answer whether a given uniform load value
c ∈ R++ is greater than the optimal load c?. By Proposi-
tion 2(i)-(ii), we have that c ≥ c? if and only if there exists
a vector pc ∈ Fix(Pc1) 6= ∅ with ‖pc‖∞ ≤ pmax. The
oracle described later verifies the existence of such a vector
without necessarily computing it. For the moment, assume
knowledge of an oracle able to give the correct answer and
knowledge of scalars (cmin, cmax) ∈ R+ × R++ satisfying
c? ∈ [cmin, cmax]. 2 Then Problem 2 can be solved as fol-
lows. Starting with the interval [cmin, cmax], we use the ora-
cle to determine whether c̄ := (cmax + cmin)/2 ≥ c?. If the
answer is positive, then we update the upper end cmax of the
interval according to cmax ← c̄. Otherwise, we update the
lower end of the interval cmin ← c̄. These steps are repeated
until the length cmax− cmin of the interval [cmin, cmax] 3 c?
is sufficiently small. Once the optimal load is estimated with
a sufficient precision, we recover the optimal power alloca-
tion by computing the fixed point of Pc?1 by using any exist-
ing method (see [5]). Algorithm 1 summarizes the proposed
mechanism to minimize the maximum load.

Algorithm 1: Bisection algorithm for load minimiza-
tion.

Data: Power mapping Pρ; maximum interval length ε > 0;
(cmin, cmax) ∈ R+ × R++ satisfying
cmin < c? ≤ cmax, where (c?,p?) ∈ R++ × RM++

is the solution to Problem 2, assumed to exist;
Result: Solution (c?,p?) ∈ R++ × RM++ to Problem 2.
while cmax − cmin > ε do

c̄←
cmax + cmin

2
;

if c̄ ≥ c? then
cmax ← c̄;

else
cmin ← c̄;

. Use Algorithm 2 to check the inequality;

p? ← p ∈ Fix(Pcmax1);
. See [5, 14] for simple fixed point algorithms;

return (cmax, p?)

We now turn our attention to the oracle, which is a direct
application of the following result (the proof can be obtained
with little effort by using [15, Facts 2 and 3], but it is omitted
owing to the space limitation):

Proposition 3. For a given (uniform) load value c ∈ R++,
consider the sequences {p′n}n∈N and {p′′n}n∈N generated by
p′n+1 = Pc1(pn) and p′′n+1 = min{Pc1(p′′n), pmax1},
where p′1 = 0, p′′1 = pmax1, and min denotes the
coordinate-wise minimum operator. Denote by c? ∈ R++ ∪
{∞} the optimal value attained by the cost function in Prob-
lem 2 (i.e., the minimum load), where we use the convention
that c? = ∞ if Problem 2 has no solution. Then each of the
following holds:

2If the current network configuration is able to support the rate re-
quirement of users with load ρ, then Proposition 2 reveals that Prob-
lem 1 has a solution, and the current load cmax = ‖ρ‖ is clearly an
upper bound of the optimal uniform load c?. For cmin, we can use
the trivial bound cmin = 0.

3731



(i) The sequences {‖p′n‖∞}n∈N and {‖p′′n‖∞}n∈N are
monotonically nondecreasing and non-increasing, respec-
tively.

(ii) c < c? if and only if there exists n ∈ N such that
‖p′n‖∞ > ‖p′′n‖∞.

(iii) c > c? if and only if there exists n ∈ N such that
‖p′′n‖∞ < pmax.

(iv) If c ≥ c?, then, for every n ∈ N, we have 0 ≤
max{‖p′n − p?‖∞, ‖p′′n − p?‖∞} ≤ ‖p′′n − p′n‖∞ =: en
and limn→∞ en = 0, where p? denotes the optimal power
allocation.

In practice, Proposition 3(ii)-(iii) enables us to verify
whether a given load c is strictly greater or smaller than
the optimal load c? in a finite number of steps. In the
unlikely case that the probed load is exactly the optimal
load c?, then the results in Proposition 3(ii)-(iii) are unable
to produce a certificate that c ≥ c?. However, if after a
sufficiently large number n ∈ N of iterations we observe
negligible changes in the sequences {p′n} and {p′′n}, and
‖p′′n − p′n‖∞ is small, then Proposition 3(iv) provides us
with some confidence that the probed load is likely to be
close to the optimal load and that the optimal power alloca-
tion p? is close to both p′n and p′′n with respect to the metric
d : RM × RM → R+ : (x,y) 7→ ‖x − y‖∞. Algorithm 2
summarizes the proposed oracle based on Proposition 3.

Algorithm 2: Oracle for Algorithm 1.
Data: Maximum transmit power pmax; minimum step ε > 0

per iteration; load c ∈ R++ to be probed;
Result: Answer whether c < c? or c ≥ c? (c? denotes the

optimal load to Problem 2);
p′1 ← 0; p′′1 ← pmax1; p′2 = Pc1(0) ;
p′′2 = min{Pc1(pmax1), pmax1}; n← 2;
while True do

p′n+1 = Pc1(p′n); p′′n+1 = min{Pc1(p′′n), pmax1} ;
n← n+ 1 ;
if ‖p′n‖∞ > ‖p′′n‖∞ then

return Certificate that c < c?;

else if ‖p′′n‖∞ < pmax then
return Certificate that c > c?;

else if ‖p′n − p′n−1‖∞ < ε and ‖p′′n − p′′n−1‖∞ < ε

and ‖p′′n − p′n‖∞ < ε then
return The probed value c is likely to be close to
c?;
. Stop the algorithm because no progress can be

made;

4. SIMULATIONS

We now solve the load optimization problem in a scenario
mimicking the stadium test case proposed by the European
METIS project [12]. In more detail, we place 142 micro
base stations under the roof of a stadium with a height of
33 m. The roof covers all stands. In the direction of the rows,
base stations are separated by 10 m, and in the perpendicu-
lar direction they have a separation of 15 m. The network
operates at 2.6 GHz with a bandwidth of B = 180 MHz.
We assume that there are K = 900 resource blocks in the
system, and the maximum total transmit power per resource
block is 1/900 W. To compute the path loss between users
and base stations, we use the ITU urban micro line-of-sight
model (ITU UMi LOS) [16, Table A1-2]. The main parame-
ters for the configuration of the antennas at the base stations is
set as follows: antenna tilt φtilt = 90◦, maximum attenuation

20 40 60 80 100 120 140
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Fig. 1: Load before and after optimization.

Am = 30 dB, 3-dB beamwidth θ3dB = 15◦, 3-dB elevation
φ3dB = 20◦, and base station antenna gain G = 17 dBi.

Stands have an inclination of 30◦ with respect to the
ground. There are 43,800 simultaneously active users de-
manding 384 kbps of traffic. These users are uniformly
distributed in the stands, and they are connected to the base
stations with the strongest received signal when all base sta-
tions transmit at full power. The antenna of the users are
placed 1 m above the ground.

With the above configuration, if all base stations transmit
at full power per resource block pmax = 1/900 W, the maxi-
mum observed load in the network is around 0.96, which can
be seen as too close to its physical limit. We then use Algo-
rithm 1 (ε = 10−5, cmin = 0, cmax = 1) with the oracle in
Algorithm 2 (ε = 10−6) to minimize the maximum observed
load in the network. Results for the load at each base station
before and after load optimization are shown in Fig. 1. For
visual clarity, with the initial power configuration, we label
base stations according to their load in descending order.

It is clear from Fig. 1 that the peak load has been greatly
reduced at the expense of increased load at base stations that
were originally lightly loaded. However, after optimization,
all base stations have more than 40% of the resource blocks
available for data transmission. Furthermore, as discussed
in [8] (see also [5]), increasing the load in lightly loaded base
stations is not necessarily a bad feature because the transmit
power decreases. In fact, in this scenario, although saving
energy is not an objective of the proposed algorithm, the to-
tal transmit power of the network (which is proportional to
ptρ, where p is the power inducing the load ρ) after opti-
mization is roughly 40% of the total transmit power before
optimization. Similar results have been obtained in different
scenarios proposed by the METIS project, but we omit these
results owing to the space limitation.

5. SUMMARY AND CONCLUSIONS

We have shown that a simple power control scheme can de-
crease the peak load in ultra-dense networks. The proposed
scheme can be especially useful when few base stations have
high load and resource blocks in these base stations have to
the released to, for example, accommodate new users in the
system. Simulations show that the total transmit power can
also be reduced by a large factor if most base stations in the
network are lightly loaded (but we emphasize that the total
transmit power may not be always reduced because reducing
the total transmit power is not the objective of the proposed
approach).
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