
TRAFFIC ENGINEERING FOR BACKHAUL NETWORKS WITH WIRELESS LINK
SCHEDULING

Nan Zhang?, Wei-Cheng Liao†, Mingyi Hong], Hamid Farmanbar§, and Zhi-Quan Luo†‡

?School of Mathematical Sciences, Peking University, China.
†Dept. of Electrical and Computer Engineering, University of Minnesota, USA.

]Dept. of Industrial and Manufacturing Systems Engineering, Iowa State University, USA.
§Huawei Canada Research Center, Ottawa, Canada.

‡School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.

ABSTRACT

Traffic engineering (TE) problem is a central component of the next
generation cloud-based wireless networks. In this paper, we study a
new resource allocation scheme for effective traffic engineering un-
der practical constraints such as the finite buffer size at each node. To
reduce the computational effort required in the existing single-slot
TE approaches and to deal with practical hardware limitations on
link flows and buffers, we propose a two time-scale, low-complexity
TE algorithm which incorporates a novel link scheduling compo-
nent. The algorithm can be distributedly implemented. Simulation
results demonstrate the effectiveness of the proposed algorithm.

Index Terms— Traffic Engineering, Link Scheduling, Two
Time-Scale Approach.

1. INTRODUCTION

Central to the next generation cloud-based networks, traffic engi-
neering (TE) problem in large-scale wireless backhaul networks has
received much attention recently. In view of the increasing network
scale and the existing hardware limitations, an effective scheme of
traffic routing and link scheduling is very important. In wireless net-
works, the half-duplex nodes do not have the capability of simulta-
neously transmitting to and receiving from too many distinct nodes,
as they all have limited number of RF chains. Since the interfering
network nodes can not be activated simultaneously, a key challenge
is to properly associate the transmitters and receivers in a slot-by-
slot manner. The resulting problem can be formulated as an integer
program [1, 3]. To deal with binary variables, most of the existing
algorithms utilize certain forms of primal/dual decomposition with
(sub)gradient update [1, 2], which can be slow. Meanwhile, many
works focus on cross-layer design of routing, scheduling and pow-
er/flow control, and TE for multi-hop wireless networks [3, 4, 5, 6].
Among these works, a popular approach is to perform certain forms
of relaxation to simplify the algorithm design. For example, ref-
erences [3, 4] proposed to consider the dual problem and relax the
flow conservation constraints by introducing Lagrangian multipliers.
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However, all of these works set up the model for only one time slot,
during which it is impractical to apply iterative algorithms. Another
limitation of these works is that they do not take into consideration of
the practical hardware limitations, such as the limited buffer size per
node. The well-known back pressure routing algorithm [7] routes
flows with given demands and link capacity constraints. While per-
forming well in general, it ignores the buffer capacity hence can not
be directly applied to the case with finite-size buffers. There are a
number of other link scheduling/routing algorithms which heuris-
tically activate links while satisfying interference constraints [5, 6].
However, few works consider the effect of finite buffer size on multi-
hop TE, and most of them do not utilize the real time buffer status to
further improve the performance. In view of the limitations in these
works, it is desirable to perform “predicted” routing in the long time-
scale with a low-complexity algorithm, and perform link activation
in the short time-scale while meeting the hardware constraints.

In this work, we propose a novel two time-scale joint flow
routing and link scheduling algorithm. In our scheme, the slow
time-scale performs traffic routing while the fast time-scale per-
forms link scheduling. The link scheduler enforces the finite buffer
size constraint while maximizing the overall system performance.
Different from the existing single-slot approaches, our method
requires less computation effort and can account for both the in-
terference/hardware constraints and the finite buffer size constraint.
The entire algorithm is distributedly implementable.

2. SYSTEM MODEL AND PROBLEM FORMULATION

The Network Model. Let us consider a wireless backhaul network
represented by a graph G = (V,L), where V = {vi} is the set of
wireless nodes and L = {lij} is the set of directed links. We as-
sume that each node is operated in the half-duplex mode, and there
is one channel between each pair of connected nodes. M commodi-
ties are transported over the network in one long-term period, which
consists of τ short-term periods, each being normalized as one unit
time. For each commodity m, the source-destination pair is given as
(S(m), D(m)). At each network node, there is one data buffer for
each commodity.
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Let fm
ij be the flow rate of commodity m on link lij , xij be the

binary variable indicating whether link lij is active (xij = 1 if lij
is active, otherwise xij = 0). The capacity of each link lij during
the long-term period is assumed to be known and fixed as Cij . This
assumption is reasonable when the power allocation/precoder design
is fixed and known with stable channel conditions during the long-
term period. Under these settings, the total flow rates over link lij is
upper bounded by xijCij , i.e.,

M∑
m=1

fm
ij ≤ xijCij , ∀ lij ∈ L. (2.1)

To simplify the description, we denote the buffer for commodity m
at vi as “buffer (m, i)”; we also refer to the size of the data in a
given buffer as its “buffer status”. We assume that buffer (m, i) has
a finite capacity except for the buffers at the source and destination
nodes (i.e., i ∈ {S(m), D(m)}), which are assumed to be infinite.
This assumption is reasonable since the received data at destination
D(m) can be quickly removed and the buffers {(m,S(m))} at the
source nodes can be assumed to be never empty. Let zmi be the
amount of data in buffer (m, i), and for simplicity let z̄ denote the
buffer capacity for all finite-size buffers. Then the individual buffer
size constraints are 0 ≤ zmi ≤ z̄, ∀ i 6= S(m), D(m), ∀m.

Let zm,0
i and zm,1

i be the status of buffer (m, i) just before and
after a long-term period respectively. For each node i, denote the
set of in-neighbors and out-neighbors as In(i) and Out(i), respec-
tively. For each commodity m, the total data received by vi during
one long-term period is τ

∑
j∈In(i) f

m
ji , and the total data transmit-

ted from vi is τ
∑

k∈Out(i) f
m
ik . Note that the difference of these

quantities equals to the change in the buffer status zmi , therefore we
can write the flow conservation constraints (for a single long-term
period) as

zm,0
i + τ

∑
j∈In(i)

fm
ji = zm,1

i + τ
∑

k∈Out(i)

fm
ik , ∀ i, ∀m. (2.2)

Also we have the following buffer capacity constraints

0 ≤ zm,1
i ≤ z̄, ∀ i 6= S(m), D(m), ∀m. (2.3)

The Interference Model. We use the well-known conflict graph
to model the co-channel interference [3]. Specifically, we construct
a conflict graph C in which each vertex represents a directed link
in L, and two vertices are connected if the corresponding two links
interfere with each other hence cannot be activated at the same time.
Denote Nij as the set of links whose corresponding vertices in the
conflict graph C are neighbors of the vertex corresponding to link
lij . Then by the conflict graph model, at any given time at most one
link inNij ∪ lij can be activated, i.e.,

xij +
∑

l∈Nij

xl ≤ 1, ∀ lij ∈ L. (2.4)

In view of the buffer capacity constraints and the interference
constraints, the flow rates need to be further constrained to avoid
buffer overflow. For a given short-term period, if lij (i 6= S(m), j 6=
D(m)) is active, then the maximum amount of flow m that vi can
transmit or vj can receive is z̄. This is because vi cannot receive
from other nodes or transmit to other nodes at the same time. There-
fore, we have the following upper bound for the transmitted flow rate

fm
ij ≤ xij z̄, ∀ i 6= S(m), j 6= D(m), ∀m. (2.5)

An Initial Problem Formulation. The achieved data rate of com-
modity m during a given long-term period is measured by the aver-
aged change in the status of the buffer at the destination node:

rm =
1

τ

(
zm,1
D(m) − z

m,0
D(m)

)
, ∀m. (2.6)

Let us define the utility U(r1, . . . , rM ) : RM → R, which is a
function of all the users’ rates in the network. Such utility function
can take the form such as the minimum rate, the sum rate or the
weighted sum rate.

With the network constraints listed above, a direct formulation
of the long-term TE is given below:

max
f ,x

U(r1, . . . , rM )

subject to (2.1)− (2.6),
fm
ij ≥ 0, xij ∈ {0, 1}, ∀m, ∀ lij ∈ L.

(2.7)

There are a couple of problems with this formulation. First,
problem (2.7) is a mixed integer linear program (MILP), which is
generally NP-hard and therefore difficult to solve to global optimal-
ity. Second, problem (2.7) provides a single routing strategy for the
entire τ short-term periods which may not be realizable given the
buffer size constraints. The reason is that the flow conservation con-
straints (2.2) only conserve flow across one long-term period without
considering the buffer status, nor the flow conservation constraint
in each short-term period. To address these practical issues, a two
time-scale formulation and a low-complexity, dynamic link schedul-
ing and flow routing algorithm are needed.

3. THE TWO TIME-SCALE APPROACH

3.1. The Long-Term TE Controller

As we described before, it may be difficult to implement the flows
and activation patterns obtained by solving (2.7) in a slot-by-slot
manner. In this section, we propose a long-term TE controller to
predict the preferred network flows and the frequency of link activa-
tion in a long period of time. In particular, we interpret xij in (2.7) as
the time fraction that lij is active in the long-term period, and relax
the integer variables to be continuous, i.e., xij ∈ [0, 1], ∀ lij ∈ L.

To improve the realizability of the relaxed long-term TE solu-
tion, we will add a few additional constraints to (2.7).
Adding Additional Constraints. Relaxing the binary variables in
(2.7) makes the feasible region larger, potentially resulting in a so-
lution that cannot be practically implemented. To mitigate the prob-
lem, we propose a few constraints that are redundant for (2.7) but
can make the feasible region of the problem tighter.

Let us consider the 3-node cycle (i, j, k) in the network:
vi, vj , vk are connected with each other (see Fig. 1). Due to
the half duplex constraint (HDC), any two directed links in the cycle
can not be active simultaneously. Assuming all the possible six links
exist in L, the HDC with respect to the cycle is

xij + xik + xkj + xki + xji + xjk ≤ 1, (3.1)

which we call “triangular constraint”. We can find out all 3-node
cycles in G and add the corresponding constraints to (2.7). Similar
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Fig. 1. A three-node cycle.

constraints that help enforce half-duplex can also be obtained, like
the constraints for 5-node cycles.
Including the Virtual Capacity. The solution of problem (2.7) (or
its modified version) predicts the rate for each commodity (rm),
and such rates can be very different across the commodities. In-
deed, some commodities may achieve larger transmission rates due
to favorable network conditions such as the relative closeness be-
tween its source and destination and/or the existence of relative high-
capacity routes. In contrast, some other commodities can achieve
very low transmission rates due to unfavorable network condition-
s. Then the following phenomenon can happen: some “preferred”
paths and “preferred” intermediate nodes will be always fully load-
ed, and some commodities have lower achieved rates with higher
transmission delay. To promote fair accessibility of network condi-
tions among different commodities, we introduce a virtual capacity
z̃mi for each buffer (m, i). We modify (2.5) by replacing z̄ by the
corresponding virtual capacity z̃mj , then obtain

fm
ij ≤ xij z̃mj , ∀ i 6= S(m), j 6= D(m), ∀m, (3.2)

which implies that the scheduled flow fm
ij is at most z̃mj . By ad-

justing the virtual capacity z̃mj for buffer (m, j) which is at the end
node of lij , link flow fm

ij can be adjusted through (3.2). When buffer
(m, j) is quite full, there is little space for receiving data, z̃mj should
be small to discourage flows going into vj . When buffer (m, j) is
close to being empty, there is more storage space for incoming data,
z̃mj should be adjusted upward to encourage flows. We propose to
adaptively update the virtual capacity according to the buffer status
at the end of every long-term period, see Table 1. In the table, the
“min” and the “max” operators are taken to ensure z̃mi ∈ [0, z̄], α
and β are predetermined parameters satisfying 0 < α < β < 1, and
∆z is the predefined stepsize for updating virtual capacity.

Table 1. Virtual Capacity Updates
if zm,1

i ≤ αz̄, z̃mi = min{z̄, z̃mi + ∆z};
if zm,1

i ≥ βz̄, z̃mi = max{0, z̃mi −∆z}.

The Long-Term TE Formulation. With the newly introduced con-
straints described above, we propose the following formulation of
the long-term TE problem:

max
f ,x

U(r1, . . . , rM )

subject to (2.1)− (2.4), (2.6), (3.1), (3.2),
fm
ij ≥ 0, xij ∈ [0, 1], ∀m, ∀ lij ∈ L.

(3.3)

The initial buffer statuses are given as input to the problem and the
buffer statuses will be updated every long-term period. The solution
fm∗
ij is actually the average rate of commoditym over link lij during

the long-term period, and the flow rate in one active short-term pe-
riod is actually fm∗

ij /x∗ij when x∗ij 6= 0. The number of short-term
periods during which lij is active can be approximated by bx∗ijτc,
where b·c represents the floor function.

Problem (3.3) is a linear program with {fm
ij } and {xij} as vari-

ables, so it can be effectively solved by the distributed asynchronous
methods introduced in [8].

3.2. The Short-Term Link Scheduler

The TE controller predicts the flow rate for each commodity on each
link (i.e., fm∗

ij ), as well as the fraction of time that each link should
be active (i.e., x∗ij). It is then the task of the link scheduler to come
up with per-time slot link activation and routing schemes. In this sec-
tion, we propose the short-term link scheduler based on the greedy
edge-coloring algorithm.

An edge coloring for a multi-graph is an assignment of colors to
the edges such that no two edges incident to the same node are col-
ored the same. The problem of determining the minimum number
of colors needed for edge coloring is called the edge-coloring prob-
lem. Despite being NP-hard, this problem can be well solved by
heuristic greedy edge-coloring algorithms in practice. For example,
the simple first fit greedy edge-coloring algorithm colors the nodes
in sequence using the first available color, and is known to provide a
2-approximate solution, i.e., the number of colors used by the algo-
rithm is at most 2∆ where ∆ is the maximum degree of the nodes in
the graph [9] (which is a lower bound of the minimum color).

To formulate our link activation problem into the edge-coloring
problem, we first construct a multi-graph that characterizes the over-
all link activation frequency. Let the multi-graph be Ge = (V, E),
where V is the same node set as in the network G, E is the set of
directed edges. Denote the number of directed edges from vi to vj
by nij . In our scheduling context, the edges with the same color can
be activated in the same time slot, therefore the total number of col-
ors used should not exceed the number of short-term periods τ . We
use the first fit greedy algorithm for scheduling. Since this algorithm
is 2-approximate, in our scheduling context this means that an up-
per bound of the required number of colors is 2∆, that is, 2∆ ≤ τ .
Further, the number of active short-term periods for lij is approxi-
mated by bx∗ijτc, which implies nij should be proportional to the
time fraction x∗ij . Notice that due to HDC, at any time for any given
network node at most one link incident on the node can be active,
and one link lij ∈ L results in nij edges in E . Thus at any time, on-
ly a subgraph of Ge is activated (available). The effective maximum
degree of the nodes in Ge can be counted by ∆ = maxnij . Based
on the discussion above, we set the value of edge numbers as

nij =
⌊τ

2
x∗ij

⌋
, ∀ lij ∈ L. (3.4)

Such settings satisfy 2∆ ≤ τ and nij is roughly proportional to x∗ij .
Given the multi-graph Ge, we then need to color the edges. It

is well-known that the scheduling results generated by the greedy
edge-coloring algorithm are heavily dependent on the order in which
we visit and color the nodes [10]. If the visiting order is poorly
chosen, some activation opportunities may be wasted. Notice that
when lij is activated in one short-term period, the transmission data
size for commoditym from vi to vj is min{fm∗

ij /x∗ij , z
m
i , z̄− zmj }.

If zmi is small or zmj is large, it is possible that only a small amount
of data will be transmitted despite a large scheduled rate fm∗

ij /x∗ij .
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Moreover, activation opportunities may be wasted due to the possible
successive activation of the same link, because the earlier activation
may have filled (or exhausted) the receive (or transmit) buffers of the
connecting nodes. In the following, we propose an edge-coloring
algorithm which includes buffer status in link scheduling.

Assume that none of the M commodities has one-hop path. In
this case the maximum data size that can be transmitted by node vi
in one short-term period is given by Bi =

∑M
m=1 b

m
i , where

bmi =

{
min{z̄, zmi }, if i = S(m),

zmi , otherwise.
(3.5)

We can easily see that Bi represents the maximum transmission da-
ta size from vi. If vi is not a source node, then Bi is exactly the
total size of data in vi. To realize the link flows predicted by the TE
controller, the link activation should give priority to the nodes who
can contribute more to the network throughput. Thus we propose to
visit the nodes in the decreasing order of Bi in each short-term peri-
od, so that the nodes that have relatively large potential transmission
data size can have higher priority. When vi is visited, we use the
following strategy to pick an incident edge to color:

S0. While satisfying the interference constraints, and if there are
incident edges corresponding to outgoing links, we choose
the one whose destination node has the smallest Bj ; other-
wise choose the edge whose source node has the largest Bj .

Our strategy of coloring the edges (scheduling links) is summa-
rized in Table 2. Further, this algorithm can be easily implemented
in a distributed way. We omit the details due to space limitation.

Table 2. Short-Term Link Scheduler (Centralized Implementation).
Construct Ge: choose edge numbers according to (3.4);
For short-term period t = 1 : τ

If Ge = ∅, stop; Else,
Calculate Bi according to (3.5);
Visit the nodes in the decreasing order of Bi, choose an
incident edge to color according to S0 for each visited node;

Active the corresponding links of the colored edges;
Update buffer status, update Ge by deleting the colored edges;

End
If t < τ , repeat the previous schedule in the remaining periods.

3.3. The Overall Algorithm

Our joint long-term TE and short-term link scheduling algorithm
is presented in Table 3. Notice that long-term TE and short-term
scheduling can both be solved distributedly, the computation com-
plexity is much lower than the existing short-term based approaches.

Table 3. The Proposed Two Time-Scale Approach
For n = 1 : T

Solve TE problem (3.3) for the nth long-term period;
Schedule link flows by the link scheduler in Table 2;
Update virtual capacity according to Table 1;

End

4. NUMERICAL EXPERIMENTS

In this section, we present numerical results on the performance of
the proposed algorithm. We consider a wireless backhaul network
with 25 network nodes, which are split into 2 categories - the macro
base station (BS) and the micro BS. The macro (reps. micro) BS has
a maximum transmit power of 20dBm (resp. 10dBm). The topology
of this wireless network is shown in Fig. 2. We assume that each BS
can interact with BSs within 360 meters, the BSs use their full power
to transmit, and the background noise is assumed to be -20dBm.
The source and the destination nodes of each data flow are randomly
selected among all the BSs and the path has at least 2 hops. We take
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Fig. 2. The considered network topology with 25 wireless nodes.

M = 30, τ = 20, z̄ = 5, α = 0.25, β = 0.75, ∆z = 0.1z̄, T =

100 and set U =
∑

m rm. We define the average achieved rate in
the first T long-term period as 1

T

∑T
t=1Rt, where Rt is the sum

of the achieved rate of all commodities in the t-th long-term period.
We also compare with the simple greedy edge-coloring based link
scheduler which uses the first-fit edge-coloring algorithm to color
the edges in the multi-graph Ge [9]. For convenience, we shall refer
the proposed two time-scale approach as “2TS-approach”.

We inject xm bits of data for commodity m every 20 long-term
periods, where xm is uniformly randomly chosen from (0, 240).
From Fig. 3 we can see that the realized flows tend to be stable
as time index increases, and most (over 94%) of the injected data
are well transmitted. The proposed link scheduler can improve the
network throughput by 30% over the greedy edge-coloring based
scheduler. Moreover, excluding either triangular constraints (∆-
constraints) or virtual capacity (vc) will decrease the overall network
throughput. Specifically, the throughput decreases by 12% without
involving virtual capacity and triangular constraints.
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Fig. 3. Comparison of the system throughput performance: (1) 2TS-
approach (2) 2TS-approach w/o vc (3) 2TS-approach w/o ∆-constraint nor
vc. Left: the average achieved data rate; Right: the accumulated received
data size.
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