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ABSTRACT

Sidelobe suppression has always been an important part of crafting
communications signals to keep interference with users of adjacent
spectrum to a minimum. Systems based on the discrete Fourier trans-
form, such as orthogonal frequency-division multiplexing (OFDM)
and single-carrier frequency-division multiple access (SC-FDMA)
are especially prone to out-of-band power leakage. Although many
techniques have been proposed to suppress sidelobes in DFT-based
systems, a satisfactory balance between computational complexity
and out-of-band power leakage has remained elusive.

Orthogonal precoding is a promising, linear technique in which
the nullspace of a precoding matrix with orthonormal columns is de-
signed to suppress the sidelobes. In particular, Xu and Chen [1],
van de Beek [2] and Ma et al. [3] have proposed orthogonal pre-
coders that yield excellent out-of-band suppression. However, they
suffer from high arithmetic complexity—quadratic in the number of
active subcarriers—which has limited their application.

In this paper, we find that the arithmetic complexity can be made
linear instead of quadratic if a block reflector is used to perform the
precoding instead of an otherwise unstructured unitary transforma-
tion. There is no penalty to be paid in achieved bit-error rate. We
show by numerical simulation that the penalty in peak-to-average
power ratio is also very small for OFDM.

Index Terms— OFDM, SC-FDMA, orthogonal precoding,
sidelobe suppression, block reflector.

1. INTRODUCTION

With the ready availability of advanced digital signal processing in
modern communications systems, the advantages conferred by the
discrete Fourier transform (DFT) are routinely exploited. The DFT
lies at the heart of orthogonal frequency division multiplexing and
OFDM is now common to many major global communications stan-
dards for digital subscriber lines, cable broadband, wireless local
area networks, digital video and audio broadcasting and fourth-
generation mobile broadband. Use of the DFT in OFDM improves
spectral density, simplifies channel equalisation and minimises inter-
symbol interference (ISI) from multi-path propagation. In an OFDM
transmitter, portions of its bandwidth can be turned on and off flex-
ibly under software control. This is the principle that underpins
orthogonal frequency-division multiple access (OFDMA). It also
makes OFDM an attractive candidate for cognitive radio [4].

OFDM is not without its disadvantages. For instance, it is sen-
sitive to Doppler diversity. However, the two disadvantages that will
concern us in this paper are its high out-of-band spectral leakage and
peak-to-average power ratio (PAPR).

Standard OFDM exhibits sidelobes which, away from the central
band, diminish in power spectral density in proportion to the inverse

square of the frequency. Relatively wide guard bands are needed
to keep the amount of interference with adjacent users to acceptable
limits. In cognitive radio, where narrow unused gaps in the spectrum
are to be exploited, wide guard bands are especially deleterious.

In 5th-generation (5G) mobile wireless, supporting the “Inter-
net of Things” will require device-to-device (D2D) communication
on a much greater scale than is seen presently [5, 6]. The emerg-
ing paradigm is sometimes called “Massive Machine-Type Com-
munication”. D2D communication is typically low-rate and low-
power. To accommodate D2D, 5G standards may relax synchronisa-
tion requirements in order to allow communicating devices to con-
serve power [7–9]. So, like cognitive radio, D2D communication
in 5G would need to exploit narrow “slots” in the available spec-
trum while only coarsely synchronised with other transmitters. Wide
guard bands again cannot be tolerated.

For these reasons, there have been many proposals for schemes
to reduce out-of-band radiation in OFDM. OFDM symbols can be
filtered in the time domain to achieve arbitrarily high attenuation of
sidelobes, but this introduces ISI [10]. OFDM symbols may be win-
dowed or undergo pulse-shaping, cyclic prefixes may be extended
or subcarriers at the edge of the band may be deactivated, but this
reduces spectral efficiency [10–12]. These may all be termed linear
approaches to sidelobe suppression.

Non-linear approaches have been studied too. Adaptive symbol
transition [13] optimises short, non-information-bearing signal seg-
ments to be inserted between adjacent symbols to suppress sidelobes
but again this reduces spectral efficiency. Cancellation carriers [14]
are sub-carriers that are reserved to actively cancel sidelobe power.
Spectral efficiency is reduced while PAPR is increased. Subcarrier
weighting [15] involves computing an optimal weighting on each
subcarrier to suppress out-of-band power but may degrade bit-error
rate (BER). The multiple-choice sequence method [16] involves gen-
erating several candidate symbols using a set of agreed rules and
selecting the one for transmission that best suppresses out-of-band
power. However, like the selected mapping technique [17] for PAPR
reduction from which it is derived, it requires side information.

Linear precoding is the method that will occupy our attention.
Here, the data for transmission undergoes a linear transformation
designed to confer some benefit. Different precoding schemes have
been proposed for OFDM to counteract channel effects, suppress
ICI, and reduce PAPR—see [18] and references therein—but the ap-
proach can also be applied to sidelobe suppression. Some of the
proposals introduce correlation that degrade the orthogonality within
each OFDM symbol [19–22]. BER increases as a consequence. In
contrast, orthogonal precoding, as first proposed by Chung [18],
does not increase the BER. Yet there is some loss of spectral effi-
ciency because degrees of freedom are sacrificed in the OFDM sym-
bol. There is also a notable increase in computational complexity.

Orthogonal linear precoding, as independently proposed by Xu
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and Chen [1], van de Beek [2] and Ma et al. [3], uses the null space
of a precoding matrix with orthonormal columns to shape the spec-
trum of the transmitted symbol. The dimension of the null space is
kept as small as possible in order to conserve the degrees of freedom
available for data transmission. The precoding matrix is therefore
approximately square. With the precoding matrix regarded as an
otherwise unstructured matrix, multiplication of the precoding ma-
trix with the data vector is a relatively expensive operation. Its arith-
metic complexity is quadratic in the number of active subcarriers.

In this paper, we make the straightforward observation that the
precoding matrix for orthogonal precoding need not be unstruc-
tured. We propose instead to use a block reflector [23, 24]. A block
reflector is a generalisation of the Householder transformation. A
Householder transformation is a unitary transform—a reflection—
that maps a specified one-dimensional subspace to another. The
arithmetic complexity of a Householder transformation is linear,
rather than quadratic, in the dimension of the vector it transforms.
Block reflectors generalise this notion to map between subspaces of
arbitrary dimension. If the dimension of the subspace is regarded
as constant, the arithmetic complexity of block reflection is like-
wise linear in the dimension of the vector undergoing reflection.
Thus, block reflection dramatically reduces the computational cost
of orthogonal precoding.

Compared to standard orthogonal precoding, using a block re-
flector does not alter the BER properties, since the precoding re-
mains orthogonal, nor does it alter the spectral properties. In numer-
ical simulations based on the E-UTRA standard for 4G mobile com-
munications [25], we show that the effect on PAPR is almost negligi-
ble for OFDM, such as is used for downlink in E-UTRA, at less than
0.1 dB. When adapted for single-carrier frequency-division multiple
access (SC-FDMA), as used for uplink in E-UTRA, we demonstrate
that block reflector precoding is not discernibly worse than the or-
thogonal precoder of Ma et al. [3], which aims to minimise PAPR.

2. SYSTEM MODEL

We make use of a standard model to represent a DFT-based commu-
nications system which is general enough to encompass both OFDM
and SC-FDMA. A block diagram is presented in Figure 1.
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Fig. 1. DFT-based communications system.

At the transmitter, complex-valued symbols emanate from the
source with the data encoded in the symbols using a modulation
format such as QPSK or QAM. The symbols are then aggregated
into groups of length N to form the OFDM symbol as they pass
through the serial-to-parallel converter (S/P). Such a group of sym-
bols can be represented in an uncoded symbol vector, x ∈ CN . A

precoding matrix P ∈ CM×N ,M > N , with orthonormal columns,
P
H

P = I, is used to generate a new vector ξ, the precoded symbol
vector. In SC-FDMA, the vector is additionally Fourier-transformed.
The resulting subcarrier mapping input vector, s, contains the com-
plex amplitudes which will be assigned to the subcarriers. That is,
s = ξ = Px or s = Wξ = WPx for OFDM or SC-FDMA,
respectively, where W is the matrix of coefficients of the unitary
DFT. To unify the notation, we can write s = Qx where Q = P for
OFDM or Q = WP for SC-FDMA.

Since the uncoded symbol vector x has smaller dimension than
the precoded symbol vector, we observe that there is a coding rate
λ = N/M which is less than unity. We will find it convenient on
occasion to consider an uncoded symbol vector that has the same
dimension as the precoded vector. Define the zero-padded uncoded
symbol vector x as

x =

(
0R
x

)
where 0R is a vector of all zeros having dimension R = M − N .
Correspondingly, s = ξ = Px or s = Wξ = WPx for OFDM
or SC-FDMA, respectively, where P is formed by prepending ortho-
normal column vectors to P to complete a basis of CM . That is, P
is a unitary matrix. As before, to unify the notation, we can simply
write s = Qx.

The subcarrier amplitudes s1, . . . , sM are mapped to subcarriers
k1, . . . , kM where each ki lies within an interval of length K >M .
A K-point inverse DFT produces a discrete-time signal segment in
vector form. The parallel-to-serial converter (P/S) reads the samples
out of the vector serially and a cyclic prefix (CP) is prepended.1 The
OFDM or SC-FDMA symbol so assembled is then converted to ana-
log, filtered, amplified, up-converted and radiated where it passes
through the channel to the receiver.

At the receiver, these operations are undone in reverse order,
with ŝ, ξ̂ and x̂ being the received approximations of s, ξ and x.

The complex baseband continuous-time signal segment output
by the digital-to-analog converters in the transmitter has the form
y(t) =

∑M
i=1 si exp(j2πkifst) for −Tcp 6 t < Ts where fs is the

subcarrier spacing, Ts = 1/fs is the useful symbol duration and Tcp

is the CP duration. The sum T = Tcp + Ts is the symbol period.
With y(t) assumed to be zero outside the time interval [−Tcp, Ts),

its spectrum is Y (f) =
∑M
i=1 a

∗
i (f)si where

ai(f) = T exp
[
−jπ(Ts − Tcp)(f − kifs)

]
· sinc

[
π(Ts + Tcp)(f − kifs)

]
and sinc(x) , sin(x)/x. With the functions ai(f), i = 1, . . . ,M ,
grouped as a column vector a(f), we have Y (f) = aH(f)s.

Given that the transmitted signal is a train of symbols of the form
y(t) transmitted serially, end-to-end, and with each symbol assumed
to be independent of all others, the power spectral density is [3, 21]

GY (f) =
η

T
‖QH

a(f)‖2 (1)

where η is the power assigned to each symbol in the source stream,
i.e., the power assigned to each element of x.

3. SIDELOBE SUPPRESSION

To suppress sidelobes, van de Beek [2] proposes selecting a set of
out-of-band frequencies M = {f1, . . . , fR} such that the PSD

1Although CP is specified in this system model, orthogonal precoding is
also applicable and effective when zero padding (ZP) is used instead of CP.
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GY (fr) = 0 for r = 1, . . . , R. It follows from (1) that the vectors
a(f1), . . . ,a(fR) should be in the nullspace of Q

H
. That is, if we

construct a matrix CvdB = (a(f1), . . . ,a(fR)) then Q
H

CvdB = 0.
As van de Beek states, while “there are no guarantees that the emit-
ted power at frequencies other than those in M is small, results
in [21] indicate that they are for a number of well-chosen setsM.”

On the other hand, Ma et al. [3] propose that, at a discrete set of
out-of-band frequencies φ, we design Q to minimise

∑
f∈φGY (f).

That is, we construct the matrix CMa whose columns are a(f) for
each f ∈ φ and set Q as the minimiser of ‖QH

CMa‖2F , where ‖ · ‖F

is the Frobenius norm.
The approach of Xu and Chen [1] is similar to, but precedes, that

of Ma et al. Their proposal is couched in the language of spectrum
pooling and seeks to maximise what they call the “contrast energy
ratio” for a secondary user within unused licensed spectrum. It re-
sults in a generalised Hermitian eigenvalue problem from which the
eigenvectors of the N smallest eigenvalues are gathered to form Q.

In the approaches of both van de Beek and Ma et al., we find Q
by first finding Q from a singular value decomposition (SVD) of the
C matrix, either CvdB or CMa. We write the SVD as

C = UΣVH (2)

where U and V are unitary and Σ is diagonal with non-negative
real elements (the singular values) on the diagonal in descending
order. It can be shown that Q = U is a suitable choice to achieve
sidelobe suppression [2, 3]. We partition U so that U = (Ũ,U)

where Ũ represents the first R columns of U and U the remaining
N columns. It is then clear that Q = U.

Although Q = U is a suitable choice to achieve sidelobe sup-
pression in either of the two approaches, it isn’t the only choice for
Q. Any choice for Q of the form Q = (ŨΨ̃,UΨ) is also admissi-
ble for any unitary matrices Ψ̃ and Ψ. Ma et al. [3] go on to propose
a method to select a particular value for Ψ that reduces PAPR. Our
aim is to derive an admissible Q that allows fast computation of Qx.

4. BLOCK REFLECTORS

A Householder reflection is a computationally efficient method that
is widely used in numerical linear algebra to effect a unitary transfor-
mation mapping vectors from a specified one-dimensional subspace
to another (and vice versa) [26, 27]. If y 6= z are unit basis vectors
for the two subspaces then the Householder matrix

H = I− ggH where g =
√

2
y − z

‖y − z‖ (3)

does what is required, namely, as can be readily verified, it is unitary,
Hy = z and Hz = y. Because the basis vectors are not unique, it
follows that the Householder matrix to effect the desired reflection
is also not unique.

At first glance, it would appear that the arithmetic complexity—
the number of floating-point operations—necessary to compute a
Householder reflection on a vector v is proportional to the square
of the dimension of v, since computation of Hv is an instance of
matrix-vector multiplication. However, observing that Hv = v −
g(gHv), we can see that the Householder reflection can instead be
computed using an inner product, a scalar-vector multiplication and
a vector subtraction. The complexity of each of these operations is
only linear in the dimension of v.

A generalised Householder reflection is a unitary transformation
that maps between a pair of specified subspaces with dimension ρ >

1. Suppose Y is a matrix whose ρ columns form an orthonormal
basis of one subspace and Z likewise yields the basis of the other.
Further suppose that the singular value decomposition of YHZ is
ΘDΦH and that all the singular values are less than unity (i.e., the
intersection of the two subspaces contains only 0). A block reflector
H can be derived in the form

H = I−GGH where G = (YΘ−ZΦ)(I−D)−1/2 (4)

We can verify that H is unitary, HYΘ = ZΦ and HZΦ = YΘ.
For fixed ρ, the arithmetic complexity of computing a gener-

alised Householder reflection on a vector v using a block reflector is
linear, rather than quadratic, in the dimension of v. Numerically sta-
ble algorithms for calculating block reflectors based on the polar and
Cholesky decompositions have been derived [23, 24]. Like House-
holder matrices, block reflectors are not unique for any specified pair
of subspaces.

5. BLOCK REFLECTORS FOR SIDELOBE SUPPRESSION

To achieve sidelobe suppression using block reflectors, we con-
struct a block reflector that maps from the subspace spanned by
e1, . . . , eR, where ei is the ith column of the identity matrix, to the
subspace spanned by the first R columns of U in (2) for OFDM
or of WHU for SC-FDMA, i.e., Ũ or WHŨ, respectively. The
resulting block reflector, H, has the properties we require for side-
lobe suppression. That is, the first R columns of H span the same
subspace as Ũ (respectively, WHŨ) and the remaining columns
span a subspace which is orthogonal to it. It follows that H is
an acceptable assignment for P, the precoding matrix. From (4),
a computationally efficient way to compute the precoded symbol
vector ξ is to evaluate the expression ξ = x − G(GHx). In do-
ing so, the computational cost of performing orthogonal precoding
becomes linear rather than quadratic in N , if we take R to be a
constant. Formally, the computational cost is O(MR).

Being a reflector, H has the property that H2 = I. Therefore, at
the receiver, the orthogonal decoding operation can be written x̂ =

ξ̂ −G(GH ξ̂). We see that computational cost is again linear in N .
This overcomes what is viewed as a major impediment to or-

thogonal precoding (and decoding). For instance, in proposing a
resource-block precoded OFDM scheme in [28], Fang et al. motivate
their investigation in part by noting that “the complexity [of orthogo-
nal precoding and decoding] has order ofO(N2), which is unaccept-
able when N is large.” In the same vein, Zheng et al. [29], introduc-
ing their own low-complexity precoding technique based on [20],
observe that “conventional [orthogonal precoding needs] computa-
tions between matrices with great dimensions and are always too
complicated especially when the number of available subcarriers is
large.” As a last example, Zhang et al. [22] motivate their projec-
tion precoding proposal by remarking that “both approaches [1, 3]
have the advantage of maintaining the receiver SNR, but their com-
putation complexity is proportional to the square of the number of
subcarriers.”

6. SIMULATION RESULTS

Results are presented here to demonstrate the power of orthogonal
precoding using block reflectors to suppress sidelobes and to explore
its effect on PAPR in OFDM and SC-FDMA. No results are pre-
sented for BER as the BER properties are unchanged with respect to
orthogonal precoders as they were originally described in [1–3].
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In Figure 2, a scenario used by van de Beek [2] is recreated to
demonstrate the effectiveness of orthogonal precoding to suppress
sidelobes. It is inspired by (4G) E-UTRA/LTE parameters [25]. Of
K = 2048 available subcarriers at 15 kHz spacing, M = 600
subcarriers are modulated using QPSK with a subcarrier mapping
such that −300 6 ki 6 300, ki 6= 0. For the cyclic prefix,
Tcp = 9Ts/128. The transmitted power is 46 dBm. Standard OFDM
exhibits the characteristic “flat top” to its power spectral density of
approximately −23 dBm/Hz. There is a slow decay of the power
in the sidelobes, not quite reaching −80 dBm/Hz at a distance of
40 MHz from the centre frequency. SC-FDMA spectral properties
with the same parameters are identical to those shown for OFDM.

The PSDs resulting from the orthogonal precoding methods of
van de Beek [2] and Ma et al. [3] are also plotted in Figure 2. In
both cases, we use block reflectors. We set R = 8, so N = 592
and the coding rate falls slightly to 592/600. For the van de Beek
approach, the spectrum is nulled at the frequencies ±5100± 1 and
±6100± 1 kHz. The out-of-band PSD is dramatically lower than
standard OFDM, almost universally 20 dBm/Hz lower. For the
Ma et al. approach, spectral leakage is minimised at frequencies
from −40 MHz to −5 MHz and from 5 MHz to 40 MHz, sampled
at intervals of 200 kHz. A further out-of-band attenuation of approx-
imately 10 dBm/Hz is evident.

In Figure 3, the complementary cumulative distribution function
(CCDF) of PAPR is examined for orthogonal precoding using block
reflectors. The parameters of the OFDM scenario are carried over
from Figure 2. The method for calculating PAPR is taken from [3]
with ten million independent trials to generate the CCDF for each
method. We see that the solid lines representing OFDM PAPR all but
coincide. The PAPR penalty for orthogonal precoding is� 0.1 dB.

A slightly more diverse picture presents itself for SC-FDMA.
It is clear that each of the orthogonal precoding techniques for SC-
FDMA incurs a penalty with respect to standard SC-FDMA. The
penalty appears to be identical regardless of the precoding method.
That is, the PAPR CCDFs for the block-reflector-based methods
(marked “refl.” in the legend) appear to coincide with each other and
with the PAPR-optimised method of [3, §IIIC] (marked “opt.” in the
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legend) that does not use block reflectors.
Down to a probability of 10−3, the PAPR penalty of orthogonal

precoding does not exceed 0.5 dB but, below that point, the penalty
noticeably increases to nearly 1.5 dB at a probability of 10−5. There
is always an advantage of at least 2 dB compared with OFDM.

7. CONCLUDING REMARKS

Orthogonal precoding is a linear technique for suppressing out-of-
band energy in DFT-based communication systems such as OFDM
and SC-FDMA. Its frequently cited drawback is that its arithmetic
complexity increases according to the square of the number of active
subcarriers, which is considered unacceptably high. In this paper, we
have shown that, by using block reflectors, the arithmetic complexity
can instead be made linear in the number of subcarriers.

Through a simulation scenario inspired by E-UTRA/LTE, we
have demonstrated that orthogonal precoding using block reflectors
achieves excellent sidelobe suppression. For OFDM, there is almost
no PAPR penalty to be seen for using orthogonal precoding—less
than 0.1 dB. For SC-FDMA, a penalty is evident, not exceeding
1.5 dB, but the penalty is no greater for the use of block reflectors as
against other orthogonal precoders.

As a final remark, we observe that block reflectors are not the
only means by which the arithmetic complexity can be made linear in
the number of subcarriers. Block reflectors have been preferred here
for their appealing simplicity in presentation. The WY representa-
tion for products of Householder reflections could have been substi-
tuted with little difficulty [27, 30, 31], as could a basis-kernel rep-
resentation [32]. Indeed, products of Householder reflections could
have been substituted directly.
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