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ABSTRACT

Parameter estimation of sinusoids is a problem of signifi-
cance in many practical applications. This problem is revisit-
ed through a new alternating direction method of multipliers
(ADMM) based approach, where the unknown parameters are
estimated from one-bit quantized noisy measurements with
time varying thresholds. The proposed method is computa-
tionally efficient and easy to implement, since each ADMM
update has simple closed-form formula. Moreover, it provides
accurate estimates by exploiting group sparsity hidden in the
signal model. Simulations demonstrate the effectiveness of
our algorithm.

Index Terms— One-bit quantization, alternating direc-
tion method of multipliers (ADMM), group sparsity, parame-
ter estimation.

1. INTRODUCTION

In digital signal processing, after sampling, the signal is
rounded to one of a number of predefined levels. This proce-
dure is called quantization, which is an essential component
of the analog-to-digital converter (ADC). It is well known that
if the quantization is fine enough, analog signals can be accu-
rately represented in the digital domain. However, in some
applications such as spectrum sensing for cognitive radio [1]
and cognitive radar [2], the signal bandwidth is usually in the
gigahertz range, which makes high bit quantization imprac-
tical. This is because both energy consumption and product
cost of the ADC device scales exponentially as the number
of bits increases. Therefore, using low bit quantizers become
meaningful in practice, especially in large-bandwidth system-
s. Particularly, one-bit quantization is a competitive choice
since it allows for an extremely high sampling rate at a low
cost.

The effects of one-bit quantization on parameter estima-
tion have been studied for many years, through reformulating
classical signal processing problems as one-bit quantization
based models [3], including radar processing [4–6], statistical
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signal processing [7–9], sampling [10] and compressive sens-
ing [11–15]. Earlier studies such as [8] and [9] considered
the one-bit harmonic retrieval, where [8] studied the influ-
ence of frequency estimation of a single-tone and [9] revisit-
ed the direction-of-arrival problem. Both of them derived the
Cramér-Rao bound for their respective scenarios, and showed
that one-bit quantization gives slightly worse performance.
The one-bit compressive sensing was introduced in [11], and
studied further in [12] and [13]. Until very recently, the one-
bit sampling study is mainly focused on comparing with the
zero threshold, and signal norm information cannot be recov-
ered. With properly chosen thresholds, however, it is shown
that the signal norm can be estimated from one-bit measure-
ments [15].

Our work in [16] and [19] considered the frequency and
phase estimation of multiple sinusoids from one-bit samples
with time-varying thresholds. It was shown that accurately es-
timating the parameters including the amplitudes of sinusoids
is possible. Moreover, two algorithms which are based on `1-
norm and logarithm approximation, respectively, were devel-
oped in [16] to estimate the unknown parameters of sinusoids
via introducing a frequency dictionary and then modeling the
original estimation problem as a sparse signal recovery prob-
lem. Note that although these two algorithms utilize convex
programming forms which can be solved by using interior-
point methods [17, 18], their complexities are too high to al-
low them to deal with large sized signals. To circumvent this
problem, in this paper, we aim at developing a computation-
ally efficient method to accurately estimate the unknown pa-
rameters of sinusoids from one-bit samples with time-varying
thresholds.

The organization of this paper is as follows. The signal
model under considering is introduced in Section 2, and an
alternating direction method of multiplers (ADMM) based
approach is devised in Section 3, to solve the parameter es-
timation problem. Simulations are included in Section 4 to
examine the performance of our method by comparing it with
the state-of-the-art methods. Finally, conclusion is drawn in
Section 5.

3699978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



2. PROBLEM STATEMENT

The 1-D harmonic retrieval problem is encountered in many
signal processing applications such as radar and wireless
communication systems, and the signal can be modeled as
a sum of several harmonics:

s(t) =

K∑
i=k

ak cos(ωkt+ φk) (1)

where ak, ωk and φk represent the amplitude, frequency and
phase of the kth sinusoid, respectively.

One essential process to implement modern signal pro-
cessing techniques is to represent the continuous signal s(t)
in digital form, which involves the so-called quantization.
Of course, fine quantization reduces the measurement error
caused by the quantizer, but significantly burdens the ADC,
resulting in a lower sample rate and higher power consump-
tion. In practical systems, e.g., in cognitive radar, where the
bandwidth is very wide, fine quantization is unrealistic (or at
least prohibitively expensive). In such cases, low-bit quantiz-
er is preferable.

In the following, we consider harmonic retrieval from
one-bit quantized measurements of s(t), referred to as one-
bit harmonic retrieval, that has the form of

y(t) = sign(s(t)− h(t)) (2)

where h(t) is a time-varying threshold and sign(·) is a sign
operator, which is characterized by

sign(x) =

{
1, x ≥ 0

−1, x < 0.
(3)

Here, the problem is to estimate the sinusoidal parameters
from its sign measurements y(t).

Define two over-complete dictionaries

Ac = [ ac(t0) · · · ac(tT−1) ]T (4)

As = [ as(t0) · · · as(tT−1) ]T (5)

where (·)T is the transpose and

ac(ti) = [ cos(ω0ti) · · · cos(ωN−1ti) ]T (6)

as(ti) = [ sin(ω0ti) · · · sin(ωN−1ti) ]T (7)
for i = 0, · · · , T − 1.

Note that the frequencies in the dictionaries are normalized as
ωn = πn/N, n = 0, · · · , N − 1. Then, (1) can be rewritten
as

s = [s(t0) · · · s(tT−1)]T = Acxc −Asxs (8)

where xc and xs are K-sparse real-valued vectors corre-
sponding to the cosine and sine amplitudes, respectively.
Thus, (2) becomes

y = sign(Acxc −Asxs − h) (9)

where

y = [ y(t0) · · · y(tT−1) ]T

h = [h(t0) · · · h(tT−1)]T .

Now the sinusoidal parameter estimation problem can be
solved as the following one-bit sampling problem with time-
varying thresholds [16], i.e.,

min
xc,xs

‖xc‖0 + ‖xs‖0

s. t. y = sign(Acxc −Asxs − h) (10)

where ‖ · ‖0 is the zero norm.

3. PROPOSED ALGORITHM

Problem (10) is non-convex. A simple way to avoid its com-
plexities is to replace the zero norm with `1-norm, then for-
mulate it as a second-order cone programming [16], which
is usually time consuming. In this section, we aim at devel-
oping a low-complexity technique to estimate the sinusoidal
parameters.

To start, let us define

A = [Ac −As] (11)

x =
[
xTc xTs

]T
(12)

which leads to

y = sign(Ax− h). (13)

Let b be the amplitude of (Ax− h). Thus,

y � b = Ax− h (14)

where � is the element-wise product of vectors or matrices.
In the noisy case, since (14) approximately holds true, we can
modify the harmonic retrieval problem as follows:

min
x,b
‖Ax− y � b− h‖22

s. t. ‖x‖0 ≤ 2K (15)

where ‖ · ‖2 is the `2-norm. Note that due to the fact that xc
and xs are both K-sparse vectors, x is a 2K-sparse vector.
Moreover, xc and xs have the same sparsity, which means
that x is group sparse. This motivates us to propose

min
x,b
‖Ax− y � b− h‖22 + λ‖x‖2,1 (16)

where ‖ · ‖2,1 denotes the `2,1-norm and is defined as

‖x‖2,1 =

N∑
i=1

(
x2i + x2i+N

)1/2
:=

N∑
i=1

‖xgi‖2 (17)
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with
xgi = [xi, xi+N ]T (18)

being the ith sub-vector of x indexed by gi.
We follow the rationale of ADMM to deal with Problem

(16). To this end, define an auxiliary variable z = x, and
write (16) as

min
x,b,z

‖Ax− y � b− h‖22 + λ‖z‖2,1

s. t. z = x. (19)

The corresponding augmented Lagrangian is

L = ‖Ax− y�b−h‖22 + λ‖z‖2,1 + ρ‖x− z+u‖22 (20)

where u is a scaled dual variable. Then the ADMM update
takes the form of

x← argmin
x
‖Ax− y � b− h‖22 + ρ‖x− z+ u‖22 (21)

b← |Ax− h| (22)

z← argmin
z

λ‖z‖2,1 + ρ‖x− z+ u‖22 (23)

u← u+ x− z (24)

where | · | denotes the absolute value. Problem (21) is equiv-
alent to

(AHA+ ρIN )x = AH(y � b+ h) + ρ(z− u) (25)

where Im is the m ×m identity matrix and (·)H is the con-
jugate transpose. Using the matrix inversion lemma, the solu-
tion of (25) can be expressed as

x ← 1

ρ

(
IN −AH

(
AAH + ρIT

)−1
A
)

×
(
AH(y � b+ h) + ρ(z− u)

)
. (26)

where (·)−1 represents matrix inverse.
In order to handle Problem (23), let us first split z and u

into N subvectors as in (18). Then we have

zgi ← argmin
zgi

λ‖zgi‖2 + ρ‖xgi − zgi + ugi‖22, ∀i (27)

which is a block soft-thresholding problem [20,21], and there-
fore has a closed-form solution as

zgi ← Sλ/ρ(xgi + ugi) (28)

where St(x) = max
{
1− t

‖x‖2 , 0
}
x.

When the algorithm converges, we obtain an estimate of
x, denoted by x̂. Then the frequency estimates are selected as
the one corresponding to the K largest values of

√
x̂2
c + x̂2

s.
Since our method is an ADMM based spectrum estimation
approach (SEA), we call it “SEA-ADMM”.

The procedures for the SEA-ADMM algorithm are sum-
marized in Algorithm 1.

Algorithm 1 SEA-ADMM for one-bit spectrum estimation
1: function x̂ =SEA-ADMM(y,A)
2: Initialize b = 1T , z(0),r = 1 u(0) = 02N

3: % 1T is a T × 1 one vector
4: % 02N is a 2N × 1 zero vector
5: % z(0) is randomly generated.
6: while Until some stopping criterion is reached do
7: x(r) = (26), where z,b,u in (26) are replaced by

z(r−1),b(r−1), and u(r−1), respectively.
8: b(r) = |Ax(r) − h|
9: z

(r)
gi = Sλ/ρ

(
x
(r)
gi + u

(r−1)
gi

)
10: u(r) = u(r−1) + x(r) − z(r)

11: r = r + 1
12: end while
13: end function

4. SIMULATION RESULTS

We present the simulations of the proposed method and com-
pare it with two methods in [16] that are `1- and log-norm
based spectrum estimation approaches (SEA). Hence, we cal-
l them `1-SEA and log-SEA. The `1-SEA has the following
formulation

`1−SEA



min
xc,xs,x̃,e,q

[
q, x̃T

]
c

s. t. y � (Acxc −Asxs + e− h) � 0

q ≥ ‖e‖2

x̃n ≥
√
x2c,n + x2s,n, n = 1, · · · , N

where c = [1, λ, · · · , λ]T ∈ RN+1. The log-SEA is an iter-
ative method which at the rth iteration solves the following
problem

log−SEA



min
xc,xs,x̃,e,q

[
q, x̃T

]
w(r−1)

s. t. y � (Acxc −Asxs + e− h) ≥ 0

q ≥ ‖e‖2

x̃n ≥
√
x2c,n + x2s,n

where w(r−1) =

[
1, λ

x̃
(r−1)
1

, · · · , λ

x̃
(r−1)
N

]T
.

In the simulations, we assume that there are four sinu-
soids with frequencies being ω1 = 1.0186, ω2 = 1.4972,
ω3 = 1.9083 and ω4 = 2.1721, amplitudes being a1 = 9,
a2 = 17, a3 = 13 and a4 = 15, and phases being φ1 = π

3 ,
φ2 = π

7 , φ3 = 7π
3 and φ4 = π, respectively. The number of

measurements is T = 512 and the signal-to-noise ratio (SNR)
is 15 dB. Moreover, the frequency dictionary is constructed
via uniformly spacing [0, π] by N = 1024 points. Thirty
one threshold values are used, and each of which is chosen
randomly at each sample. All results are obtained using 100
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Fig. 1. Cost function value versus number of iterations.
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Fig. 2. Sparse spectra recovery of SEA-ADMM from 100
independent tests, where vertical lines stand for the spectrum
estimates and × stands for the true spectral localization.

Monte-Carlo trials on a computer with 3.6 GHz i7-4790 CPU
and 8 GB RAM.

In the first example, we study how the shrinkage param-
eter λ in (19) impacts the performance of SEA-ADMM in
terms of convergence speed and estimation accuracy. We keep
ρ = 1 and vary λ from 10 to 30. Fig. 1 shows the cost
function value in (16) versus the number of iterations. As
we can see, our scheme converges after 200 iterations and a
smaller λ provides faster convergence speed. However, SEA-
ADMM with a smaller λ produces less sparse spectrum esti-
mates which is shown in Fig. 2.

We now compare the spectrum estimation performance.
For the proposed method, we set λ = 30 and ρ = 1, and

design stopping criterion as the relative cost function value
error below 10−6, i.e., |f

(r)−f(r−1)|
f(r−1) ≤ 10−6, where the cost

function is defined in (16). For the `1-SEA and log-SEA, the
user defined parameter is set to be 2. It is seen from Fig. 3
that all the algorithms have four distinct peaks. Among the
tested algorithm, the SEA-ADMM has the best performance
while the `1-SEA is the worst since it has lots of small am-
plitudes associated with the incorrect indices. The log-SEA
scheme performs much better than the `1-SEA, and this per-
formance improvement is mainly due to the weights that make
a compromise between sparse promotion and noise suppres-
sion, but at the expense of increased complexity. It should be
noted that the averaged CPU time for SEA-ADMM, `1-SEA
and log-SEA are 1.1507 s, 54.6100 s and 184.2318 s, respec-
tively. It is obvious that our method is computationally the
most efficient.
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Fig. 3. Sparse spectra recovery performance comparison from
100 independent tests, where vertical lines stand for the spec-
trum estimates and × stands for the true line spectrum.

5. CONCLUSION

In this paper, we have considered the problem of estimat-
ing unknown parameters of sinusoids from its noisy one-bit
thresholded measurements. We have provided an algorithmic
framework that is based on ADMM, namely, SEA-ADMM,
which is computationally efficient and easy to implement.
Simulation results have been provided to show that the pro-
posed scheme is faster and offers better spectral estimates
than the existing algorithms.
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