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ABSTRACT
We consider the problem of learning dictionaries for data com-
pression. Different from ordinary learning methods, the ob-
jective is to design a dictionary such that the signal has a low
entropy representation in the basis of the dictionary, rather than
giving a sparse or low-energy representation. To achieve this
goal, we need to consider the effect of quantization on the rate-
distortion curve as well as an estimation of the distributions
of the coefficients. Based on this probability estimation, the
coefficients are computed, quantized and then entropy-coded.
As such, we have developed algorithms for different classes
of dictionaries; orthonormal, union of orthonormals and gen-
eral dictionaries with unit-norm atoms, to iteratively learn the
dictionary and the distribution models of the coefficients. A
mixture of Gaussians is adopted to estimate the probability
and is updated using the expectation maximization algorithm
together with the dictionary learning. Simulation results on
the real seismic data show the effectiveness of the proposed
algorithm compared to ordinary dictionary learning methods.

Index Terms— Dictionary Learning, Signal Compression,
Low-Entropy Signal Representation

1. INTRODUCTION

Nowadays, modern sensing applications generate excessive
amount of data which require a large bandwidth for transmis-
sion and a large repository to store. For example, a typical seis-
mic survey may generate tens of terabytes of data. Therefore,
compression at the sensor before transmission is emerging as
a critical part in many data acquisition applications, especially
in wireless systems.

Numerous algorithms have been developed for efficient
signal compression. A large class of such algorithms relies
on finding an appropriate transform to represent data more
efficiently, in a way that discarding the ’least important’ in-
formation in the transform domain has an insignificant effect
on the quality of the data. Examples of such transforms in-
clude discrete cosine transform (DCT) and wavelets which
have been successfully used for image compression in JPEG
and JPEG2000 standards. In these methods, the dictionary is
fixed and not adapted to a specific desired class of signals. In
recent years, many algorithms have been proposed for design-
ing signal-dependent (overcomplete) dictionaries, especially
for the sparse representation. These methods have been shown

to produce great results in applications such as denoising [1,2],
face detection [3], image classification and restoration [4, 5]
and recently for image and video compression [6–8].

In this paper, the goal is to design dictionaries that are
adapted to the available data and result in good compression
performance, especially for the class of seismic signals. Our
approach is different in the sense that the main objective is
designing a dictionary and devising an algorithm to find a
representation of the signal in the dictionary domain such that
the representation requires less bits for compression. This is
a departure from conventional dictionary learning methods,
whose objective is to design dictionaries for sparse signal
representation instead of directly optimizing for compression.

In the next section, we formulate the problem more rig-
orously and state the assumptions that help in designing a
dictionary-based compression algorithm. In section III, the al-
gorithms for different classes of dictionaries are presented and
finally, through simulations, we demonstrate the effectiveness
of the proposed approach.

1.1. Notations

We denote vectors by bold-faced lower-case letters and matri-
ces by bold-faced upper-case letters. For a vector a, its i-th
entry is denoted by ai and for a matrix A, a:,i or ai repre-
sents the i-th column, ai,: the i-th row of the matrix and ai,j
the element at row i and column j. ‖A‖F is the Frobenius
norm of matrixA and ‖a‖2 is the `2-norm of vector a. log2
denotes the logarithm in base 2 and ln is the natural logarithm.
N (µ,Σ) denotes a multivariate Gaussian random variable
with mean vector µ and covariance matrix Σ.

2. PROBLEM STATEMENT

In this paper, we investigate the problem of dictionary do-
main compression of data X = [x1 x2 . . . xN ]. It involves
designing an appropriate dictionaryD, from a set of desired
dictionaries D ⊂ Rn×m, and an algorithm to find discrete
coefficients w(q) from a (possibly unknown) set W ⊂ Rm,
such that x ≈ Dw(q) and the rate to transmit w(q) is as
low as possible. Minimizing the total rate, R, of transmitting
W = [w1w2, . . . ,wN ] such that the error remains less than
a given threshold, ε, can be expressed as

min
D∈D,W∈W

R(W )

s.t. ‖X −DW ‖2F ≤ ε.
(P1)
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Alternatively, for a suitable parameter λ, we desire to

min
D∈D,W∈W

‖X −DW ‖2F + λR(W ). (P2)

Note that we have ignored the cost of transmitting dic-
tionary, D, as it is constant and independent of the learning
algorithm. In the limit, by increasing the number of data
samples, the fixed cost of transmittingD becomes negligible
compared to the rate of all coefficients. For example, in our
simulations, it contributes to less than 10% of the total bit-rate.
Or, as is the case in the memory-assisted compression [9], the
dictionary is learned at both the encoder and decoder, via train-
ing the dictionary over available data in the common memory
from past transmissions.

Two possible approaches to optimize the rate are

1. Directly optimizing for discrete values of w(q). This
requires optimizing for a discrete (finite or infinite) set
W and a probability distributionP (·) on each element of
W . However, the increase in the number of parameters
makes the optimization problem difficult to solve in
most cases and may result in poor local minimum.

2. An alternative method would be to let the coefficients
take any value, but use an (optimum) quantizer to dis-
cretize and then encode for compression.

In this paper, we focus on the second approach. The coeffi-
cients W ∈ Rm×N are found such that with an appropriate
quantizer Q(·), Wq = Q(W ), ‖X −DWq‖2F ≤ ε and the
rate R(Wq) is minimized.

2.1. Quantizer Design

Although it is possible to use Lloyd-Max [10, 11] approach to
design a quantizer with minimum distortion, for any number
of quantization bins, it does not necessarily give the minimum
rate for the required distortion. On the other hand, entropy-
constrained algorithms to design the quantizer are more com-
plex to optimize and in our experiments with real data on
seismic signals and at our desired SNRs (20-40 dB), they did
not perform much better. Therefore, we decided to use uni-
form quantizers to discretize the coefficients. In addition to its
simplicity, uniform quantizer has the advantages of (i)

1. The scalar uniform quantizer is asymptotically efficient
under weak assumptions on the density function, i.e., its
output entropy is asymptotically smaller than the rate of
any other quantizer for the given distortion criteria [12].

2. The error due to the quantization is uniformly bounded
for all values of w, i.e., if w(q) = Q(w), then ‖x−
Dw(q)‖2 ≤ ‖x − Dw‖2 + c where c is a constant
that only depends on the quantization step-size δ and
dictionary D, independent of w and x. This helps
controlling the SNR of each individual block of data, x.

3. In quantizing a continuous random variable z with small
quantization step-size, δ, the rate is R(z(q)) ≈ Hd(z)−
log2 δ, where Hd(.) is the differential entropy. There-
fore, optimizing for coefficients in Rm×N and using
a uniform quantizer adds only a constant to the cost
function, independent of the final solution.

2.2. Modeling the Distribution of Coefficients

The next step is estimating the probability distribution of the
coefficients to design a (near optimum) codebook and compute
the rate. Although using non-parametric density estimation
methods gives more flexibility, it requires more information to
be transmitted to have the probability model at both encoder
and decoder. Furthermore, optimizing for the distribution to
reduce the rate is not an easy task and it has the potential of
over-fitting the distribution. Hence, for the new data, the model
may not be a good representative. Therefore, parametric den-
sity estimation is the method of choice for rate optimization.

In this paper, we used Gaussian Mixture Model (GMM)
to estimate the distribution of coefficients, i.e., p(w) =∑

s π(s)p(w|s) where π(s) is the weight of sources indexed
by s and p(.|s) ∼ N (µs,Σs) is a multivariate Gaussian
distribution of the same dimension as w. We choose GMM
mainly because the proposed algorithm will have a closed
form solution and becomes less complex. Furthermore, for
large enough number of sources in the mixture, GMM results
in the same distribution for the quantized coefficients, w(q).

To further reduce the complexity of the compression algo-
rithm, we encode each coefficient separately. This implies that
the underlying distributions for wi’s, used in the compression,
be independent, i.e., p(w) =

∏
i pi(wi). This is equivalent to

assuming diagonal covariance matrices in the mixture model.

2.3. Outline of the Dictionary Learning Algorithm

As simultaneously optimizing for all parameters is not an easy
task, we divide the optimization problem (P1) or (P2) into
three steps such that at each step, only one set of parameters
are updated, while the remainings are kept fixed.

As the coefficients are encoded separately, R(W ) =∑N
i=1R(wi) = −

∑N
i=1 log2 p(wi). The rate can be upper

bounded as− log p(wi) ≤ − log π(ŝi)− log p(wi|ŝi), where
ŝi is the maximum a posterior (MAP) estimation of source
index, s, from the coefficients wi. This can be interpreted
as the encoder at the transmitter estimates the source that
have generated the coefficients and use the specific codebook
designed for that source to compress the coefficients. This
helps to further simplify the optimization problem. Thus, the
general steps of iterative dictionary learning for compression
can be summarized as following;

1. For the current coefficients, update dictionaryD to min-
imize the error

min
D∈D

‖X −DW ‖2F . (1)
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2. Fixing the distribution model Θ = {(π(s),µs,Σs)},
and dictionary D, the sub-problem of finding the best
compressible coefficient for each data vector x is

min
s,w
‖x−Dw‖22 − λ (log π(s) + log p(w|s)) , (2)

or
min
s

max
w

log π(s) + log p(w|s)

s.t. ‖x−Dw‖22 ≤ ε.
(3)

3. Update the distribution to fit the coefficients and further
reduce the bit rate.

4. Iterate the above steps until convergence.

In the next section, we consider different classes of dictionaries
and address each of the above subproblems.

3. LEARNING DICTIONARY FOR COMPRESSION
In this section, we consider three different classes of dictio-
naries: orthonormal, union of orthonormal dictionaries, and
general dictionaries with unit-norm atoms.

3.1. Updating Dictionary

As mentioned earlier, at each iteration of the algorithm, the
dictionary is updated to minimize the error ‖X−DW ‖2F for
a fixed W . Here, we briefly review the adopted methods to
update the dictionary in each desired class of dictionaries.

3.1.1. Orthonormal dictionary

It is well known that the orthonormal dictionaryD that min-
imizes ‖X −DW ‖2F for fixed X and W is given by the
singular value decomposition:

Lemma 1 (see e.g. [13]). Let USV T be the svd of XW T .
The orthonormal dictionary that minimizes ‖X −DW ‖2F is
given byD = UV T .

3.1.2. Union of Orthonormal Dictionaries

Let D = [D1D2 . . . DL] be the concatenation of L or-
thonormal dictionariesDl. By decomposing the coefficients
W accordingly, the error can be rewritten as X −DW =
X −

∑L
l=1DlWl. In this case, block coordinate relaxation

methods [13, 14] have been used successfully to update the
sub-dictionaries, one at a time. Let El = X −

∑
k 6=lDkWk.

Fixing all sub-dictionaries exceptDl, Lemma 1 can be used
to find the optimum dictionary that minimizes the error, i.e.,
Dl = argminD ‖El −DWl‖2F .

3.1.3. Dictionaries with Unit-Norm Atoms

Assume thatD = {D ∈ Rn×m : ‖di‖2 = 1, i = 1, 2, . . . ,m}.
Unlike the orthonormal case, there is no closed-form solution
to update D. However, different algorithms such as MOD
and projection [15], K-SVD [16] and Lagrange dual [17] have
been proposed to find the dictionary that minimizes the error.

As the complexity of the above methods is relatively high,
we propose using the following simple step-by-step algo-
rithm to update the dictionary atoms iteratively. Note that
DW =

∑
j dj wj,:. Therefore, fixing all atoms of the dictio-

nary except di, the error will be Ei =X −
∑

j 6=i djwj,: and
the optimum choice for di for the given coefficients is

d∗i = argmin
d
‖Ei − dwi,:‖2F

s.t. ‖d‖2 = 1,

whose solution is d∗i = v
‖v‖2 , where v = Eiw

T
i,:.

Note that in the rate-constrained representation of the sig-
nal, (P1) or (P2), since the coefficients no longer minimize only
the distortion term ‖X−DW ‖2F , they will not be orthogonal
to the error, i.e. Eiw

T
i,: 6= 0 and d∗i is usually well-defined.

3.2. Computing Coefficients

Recall that for a given source index s in the mixture model,
the coefficients are found using (see (2))

w∗(s) = argmin
w

‖x−Dw‖22 − λ
(
log π(s) + log p(w|s)

)
= µs + (DTD +

λ

2
Σ−1s )−1DT (x−Dµs), (4)

where µs and Σs are the mean and covariance matrix of the
multivariate Gaussian source determined by index s.

The resulting minimum total cost is obtained as

J (s,w∗(s)) = λ
[
(x−Dµs)

T
(
λI + 2DΣsD

T
)−1

(x−Dµs) + 0.5 ln det(Σs)− lnπ(s)
]
.

(5)

For a given dictionaryD, finding the best sources s∗ for (P2),
which minimizes (5), requires enumerating all possible choices
of s and comparing the values of the total cost function. Alter-
natively, for (P1), it requires an additional optimization step to
find λ such that ‖x−Dw∗(s)‖22 ≤ ε prior to comparing the
rates for all possible choices of s.

However, since the covariance matrix is assumed to be
diagonal1, for the orthonormal dictionary, the source index and
optimum value of the i-th coefficient are obtained by

s∗i = argmin
s

(µi,s − yi)2

λ+ 2σ2
i,s

+ ln
σi,s
πi(s)

, (6a)

w∗i = wi(s
∗
i ) =

λµi,s∗i
+ 2σ2

i,s∗i
yi

λ+ 2σ2
i,s∗i

, (6b)

where y =DTx, and µi,s and σi,s are the mean and standard
deviation of the s-th source in the GMM of the i-th coefficient.

For union of L orthonormal dictionaries, we can use block
coordinate relaxation method to compute the coefficients ef-
ficiently. Let D = [D1D2 . . . DL], and wl be the vector

1Since each coefficient is compressed separately, they should have inde-
pendent probability models.
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of coefficients corresponding to Dl. Starting from an initial
guess for w (using matching pursuit or pseudo-inverse ofD),
at each iteration, we fix all coefficients exceptwl and compute
yl =D

T
l

(
x−

∑
k 6=lDkwk

)
. Then, sl and wl are updated

by minimizing ‖y−Dlwl‖22 + λR(wl), given by (6).
3.3. Updating the Model
To update the models, the Expectation Maximization (EM)
algorithm is exploited [18, 19]. At each iteration of the dictio-
nary learning algorithm, few iterations of the EM algorithm is
applied on each row of the coefficients to update the model.

4. SIMULATION RESULTS

We have evaluated the performance of our proposed method
on real seismic traces available from [20] and [21], (referred to
as DB1 and DB2 here). The data from each sensor was treated
as a one-dimensional signal and was segmented into blocks of
length n to create data vectors, xis. In the simulations n = 16
and n = 32 were used. To model the distributions of the
coefficients, different number of sources, K, in the Gaussian
mixture model were tested and based on the results, we found
out that there is no significant improvement in the performance
by increase K beyond 5. So, here, only the results for K = 5
mixtures for each coefficient are presented.

The rate-distortion (R-D) curves of the proposed method
is compared against standard DCT (for orthonormal dictionar-
ies) and [DCT I] (for over-complete dictionaries) and stan-
dard dictionary learning algorithms for sparse representation
(LASSO-based optimization with different weights). To obtain
the R-D curves, we ran all algorithms for different values of
the parameters and used appropriate uniform quantizer to get
the best compression rate for the SNR from 20 to 40 dB.

Figures 1 and 2 show the results for orthonormal dictio-
naries of size 32 × 32 on DB1 and DB2, respectively. As
DB1 has more measurement noise, the performance gap (in
Fig. 1) is not as significant as those of DB2 (in Fig. 2). Fur-
thermore, since the existing sparse dictionary learning method
is not specifically designed with the compression gain as the
objective, it has a poor performance and sometimes, in our
simulations we observed that it performs even worse than stan-
dard DCT-based methods. Similar results were obtained for
dictionary size 16× 16 which is omitted here.

In Fig. 3, the performance of the proposed algorithm for
learning union of two orthonormal dictionaries (n = 16 and
m = 32) is compared versus the [DCT I] dictionary and sparse
dictionary learning method, where the coefficients of [DCT I]
dictionary is computed via orthogonal matching pursuit [22].

5. CONCLUSION

In this paper, we have developed a dictionary learning algo-
rithm such that the desired class of signals has a low-entropy
representation in the basis of the dictionary and hence, is more
suitable for compression. To do so, we first studied the effect
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Fig. 1. R-D of dictionaries for database DB1, n = 32, k = 5
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Fig. 2. R-D of dictionaries for database DB2, n = 32, k = 5
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Fig. 3. R-D (per coefficient) for different dictionaries of size
16× 32 and K = 5, applied on DB2

of quantizer on the rate-distortion and concluded that for the
real signals (seismic traces) and the desired range of SNR
(20dB and above), the uniform quantizer performs close to
optimum. To further simplify the compression algorithm, the
encoding of each coefficient is done separately and in a mem-
oryless manner. We used different Gaussian mixture models
to approximate the distributions of the coefficients. Based on
these assumptions, the dictionary learning algorithm consists
of iteratively updating the probability models, computing com-
pressible coefficients and updating the dictionary to reduce
the distortion and rate. Simulation results showed that the
proposed algorithm performs well for the compression of real
seismic traces, outperforming ordinary learning methods for
the sparsity and standard DCT transform.
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