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ABSTRACT

We consider the degree distribution design of the low-density
parity-check (LDPC) code ensembles for symmetric Gaus-
sian multiple-access channels (GMAC). To characterize the
probability density function (PDF) of the message passing in
the process of joint decoding, we propose a new scheme to
construct the associated Gaussian mixture (GM) distribution,
where each GM component is assigned according to the cor-
responding signal group transmitted by the users. By tracking
the variation of the GM components in the iterative decoding
process, more accurate mutual information can be obtained
for the extrinsic information transfer (EXIT) chart analysis.
Simulation results show that the performance of our proposed
LDPC codes is better than that of the existing methods.

Index Terms— LDPC, EXIT analysis, Gaussian mixture,
MAC

1. INTRODUCTION

Recently, network information theory has been widely ap-
plied in wireless networks [1], where the applications to
multiple-access channels (MACs) are first investigated. It has
been shown that the low-density parity-check (LDPC) codes
[2] designed under the EXIT chart analysis [3] and the den-
sity evolution (DE) [4] can approach the Gaussian channel
capacity in point-to-point (P2P) communications using the
belief propagation (BP) decoding algorithm [5][6]. However,
for multi-user scenarios, since the EXIT chart analysis and
the DE cannot be performed straightforwardly, it is difficult
to design the LDPC codes based on the decoding process
analysis. This means that new approaches are required.

As is known, DE is a powerful tool for designing the de-
gree distribution of LDPC code ensembles. However, DE has
higher complexity. The EXIT chart analysis is a method of
Gaussian approximation to the DE based on the mutual in-
formation measure. Compared with the DE, the EXIT chart
method can greatly simplify the PDF computation of the mes-
sages in the iterative decoding of the LDPC codes. Further-
more, with the EXIT chart analysis, the problem to optimize
the degree distribution can be formulated as a linear program
(LP) [7].

However, when applying the EXIT chart analysis to multi-
user communications, there are two important issues we must
consider: 1) The joint decoding scheme requires the decoders
to exchange the message in each decoding iteration, which
introduces dynamic features in the decoding process. These
dynamic features should be considered in the associated EXIT
chart analysis. 2) The PDF of the message passing through the
nodes in the decoders is no longer Gaussian [8]. This implies
that a new approach to the mutual information computation in
the EXIT chart analysis is required.

Considering the above two issues, several methods were
proposed to design the LDPC codes for the two-user symmet-
ric GMAC. In [9], an iterative joint decoding scheme is pro-
posed to extend the BP algorithm to multi-user cases, which
makes the EXIT chart analysis applicable to the design of the
degree distribution for the two-user MAC. In [10], the authors
showed that by using the extended DE and EXIT chart anal-
ysis, a good LDPC code ensemble with desired degree dis-
tribution for GMAC can be obtained. Furthermore, the GM
distribution for the EXIT chart analysis is introduced to for-
mulate the PDF of the associated message in the analysis of
the decoding process [8].

Motivated by the work of [8, 10], we find that there is still
room to improve the estimation accuracy of the PDF with the
GM distribution. Here, we propose to estimate the PDF by
constructing the components of GM distribution based on the
signal groups transmitted by the users. By tracking the pa-
rameters of each PDF component, the mutual information for
the EXIT chart analysis can be computed with high accuracy.

2. SYSTEM MODEL

2.1. Channel Models and Its Rate Region

Consider an n-user GMAC. Assuming that BPSK signaling is
used for each user, the received signal is denoted by

Y =

n∑
i=1

hiXi + Z, (1)

where Xi is the input signal for the i-th user with the aver-
age energy E‖Xi‖2 = 1, Z is the symmetric white Gaussian
noise which follows N (0, 1), and hi is the channel gain for
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the i-th user. The signal-to-noise ratio (SNR) for the i-th us-
er at the receiver is thus represented by h2i . The associated
channel capacity region [11] of an n-user GMAC can be char-
acterized as the convex hull of the rate sets (R1, ..., Rn) over
the product distribution

∏n
i=1 p (xi), which is denoted by∑

j∈J
Rj ≤ I (X (J) , Y |X (Jc)) ,∀J ⊆ {1, . . . , n}, (2)

where Jc denotes the complementary set of J .

2.2. LDPC Codes and Its Joint Decoding Scheme

The LDPC codes, proposed by R. Gallager in 1962, can be
represented by their parity-check matrices. By introducing
irregular parity-check matrices, the codes generated can have
better performance. These codes are called irregular LDPC
codes [2]. The degree distribution of an irregular LDPC code
ensemble can be specified by the following two polynomials:

λ (x) =

dv∑
j=2

λjx
j−1, ρ (x) =

dc∑
j=2

ρjx
j−1, (3)

where λ (x) is for variable nodes (VNs), ρ(x) is for check
nodes (CNs), and dv and dc denote the maximum variable
degree and the maximum check degree, respectively. The rate
of the code can be calculated as

R = 1−
∑dc
i=2 ρj/j∑dv
j=2 λj/j

. (4)

In the decoding process, the log-likelihood ratios (LLRs) used
in the BP decoding algorithm [12] are often denoted as the
messages transferred inside the decoder, represented by

m = log
p(x = +1|y)

p(x = −1|y)
. (5)

However, for an MAC receiver, decoding the signals of sev-
eral users can be performed simultaneously, which leads to
joint decoding. A joint decoding scheme is shown in Fig. 1,
where some of the LLRs are shared by the decoders to cancel
the interference from each other. Comparing with the single-
user decoding process, the additional nodes, which are called
state nodes (SNs), are required for the collaboration of all the
decoders. The LLRs transferred between the corresponding
nodes can be represented by mvc (from VNs to CNs), mcv

(from CNs to VNs), mvs (from VNs to SNs), and ms (from
SNs to VNs), respectively. Since ms contains the channel in-
formation and the information sent by other decoders, we call
ms the side information in the sequel. The associated LLRs
are updated under the criterion of maximum a posteriori in
the joint decoding scheme [4, 12].

2.3. EXIT Chart Analysis

The EXIT chart analysis is first introduced by ten Brink to
analyze the convergence of turbo codes [13]. The main idea
of the EXIT chart analysis is to compute the mutual informa-
tion I(x;m) between the transmitted signals x and the LLRs

Fig. 1. Receiver structure with joint decoding for 2-user MAC

m in the iterative coding scheme. If I(x;m) keeps increasing
(up to 1) during the decoding process, then the decoding will
be considered a successful one. In P2P communications, the
PDF of the LLR mvc and mcv can be approximated by the
Gaussian distribution with the mean being half of the covari-
ance [14]. This is often called the consistence property, which
allows the associated PDF to be characterized by only one pa-
rameter (mean or covariance). For a given channel condition
and a given degree distribution, the EXIT chart analysis with
the associated mutual information computed by J (·) can be
used to evaluate the decoding convergence of the code ensem-
bles [3, 15]. However, for the multi-user cases, this property
will no longer hold.

3. AN APPROACH TO THE LDPC CODE DESIGN

3.1. A New Approach to the Associated PDF

To compute the mutual information I(x;m), the knowledge
of the PDF p(m) of the LLRs is required. It is evident that the
PDF of the LLRs in the joint decoding scheme is more com-
plicated than that of the single-user decoding. To approach
the PDF of the LLRs, the distribution with GM is often ex-
ploited [8, 10]. The distribution with GM is often the weight-
ed sum of several Gaussian distributions given by

p(m) =

n∑
i=1

ωi√
2πσ2

i

exp

(
− (m− µi)2

2σ2
i

)
, (6)

where n is the number of components, wi is the weight for the
i-th component, and µi and σi are the mean and covariance
of the i-th Gaussian component, respectively.

Different from the existing schemes that use the expected
PDF of the received signals, here we propose a new one to
approach the PDF, where each of the Gaussian components
corresponds to one of the possible group signals transmitted
by the users; i.e., assign an independent Gaussian component
to each signal group. Without loss of generality, for the i-th
decoder related LLRs, we assume that the i-th user transmits
only zero codeword; i.e., xi = +1. For the other users’ code-
words, the information bits follow Bernoulli distribution with
equal probability. For each decoder in an n-user synchronized
communication system, there are in total 2n−1 signal groups
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Fig. 2. The LLRs passing between SN and decoders

with equal probability, as shown in Fig. 2.
The PDF of the corresponding LLRs (mvc and the side

information ms) can be approximated by the GM distribution
with 2n−1 components. For the LLRs sent from CNs to VN-
s, we consider that all the group signals have the same mcv ,
which are shown in Fig. 2. The parameters of the k-th com-
ponent corresponding to mcv received at the VN with degree
d can be denoted by

µvc,k = µs,k + (d− 1)µcv,

σ2
vc,k = σ2

s,k + (d− 1)σ2
cv. (7)

Similar to that of [9, 8], we assume that the PDF of the mcv

follows a Gaussian distribution with the mean being half of
the covariance.

Considering the transmitted signal groups, the PDF of the
side information ms can be represented by

p (ms) =

2n−1∑
k=1

p (ms|Xk)P (Xk), (8)

where Xk represents the k-th group signal, p (ms|Xk) de-
notes the PDF component when the k-th group signal is trans-
mitted, and P (Xk) is the probability that the k-th group sig-
nal is transmitted. Under the Gaussian assumption for each
PDF component, the mean µs,k and covariance σ2

s,k for the
k-th component can be estimated by the Monte Carlo trans-
formation (MCT) [16] according to the following non-linear
function:

m
(i)
s,k = log

p(yk|xi = +1)

p(yk|xi = −1)

= log

∑
l p(yk|xi = +1, X̄

(i)
l )P (X̄

(i)
l )∑

l p(yk|xi = −1, X̄
(i)
l )P (X̄

(i)
l )

,

(9)

where X̄(i)
l is composed of all the components of Xl except

the i-th user signal, and m
(i)
s,k denotes the side information

received at the i-th user decoder.
In the decoding process, mvs sent from VNs to SNs

are the sum of mcv passing along the edges connected
with the corresponding VNs. Assuming that mcv follows
a Gaussian distribution with the mean being half of the co-
variance, the corresponding PDF p(mvs) can be represent-

Fig. 3. The trace of the mean and covariance of each ms PDF
component in 2-user Gaussian MAC when SNR=-1.73 dB

ed by N
(
σ2
vs

/
2, σ2

vs

)
, where σ2

vs =
∑dv
j=2 jλ̃j · σ2

cv and
λ̃j is the proportion of the VNs for degree j, denoted by
λ̃j =

λj/j∑dv
j=2 λj/j

.

In Fig. 3, we plot the curves of the PDF components
p (ms|Xk) varying with the covariance σ2

cv for the cases of
two-user GMAC, where σ2

cv indicates the progress of the de-
coding process. By observing the curves in Fig. 3, we see
that the mean-to-covariance ratio of each component gradu-
ally approaches 0.5 as σ2

cv increases. This suggests that the
multi-user joint decoding becomes single-user decoding after
a sufficient number of iterations. However, in the initial stage,
the mean-to-covariance ratios of all the PDF components are
dynamic and different from each other.

3.2. Mutual Information Computation

According to the estimated PDF, we can compute the mu-
tual information between the transmitted bits and the LLRs,
which is essential to the EXIT chart analysis. Instead of us-
ing the channel adapter in [10], we consider 2n−1 kinds of
transmitted signal groups with equal probability for n-user
cases. Since the symmetric condition [12, Def.1] still holds
for joint decoding (i.e., p(m|xi = +1, X̄

(i)
k ) = p(−m|xi =

−1,−X̄(i)
k )), the mutual information can be computed by

I (xi;m) =
1

2n−1

∑2n−1

k=1
I
(
xi;mk|xi=+1, X̄

(i)
k

)
. (10)

If the mean-to-variance ratio of each component is of the
same value D, (10) can be simplified with the k-th compo-
nent denoted by

I
(
xi;mk|xi = +1, X̄

(i)
k

)
=1−

∫ +∞

−∞
p
(
m|xi=+1, X̄

(i)
k

)
log
(
1+e−2mD

)
dm. (11)

Notice that when n = 1 and D = 0.5, (11) goes to J(·) of [3]
for the single-user decoding analysis.

However, as shown in Fig. 3, the mean-to-variance ratio
of each component is not constant at the initial stage of the
multi-user decoding. If the ratio of each PDF component was
considered to be of the same value, there will be larger er-
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rors in computing the mutual information using (11), which
will make the optimal LDPC code design being deviated. To
reduce such errors, we propose to use the exact expression
of the mutual information I (xi;mvc) in (10), where the k-th
component is numerically computed according to

J̄k
(
µvc, σ

2
vc

)
= 1− 1√

2πσvc

∫ +∞

−∞
e

−(m−µvc,k)
2

2σ2
vc,k

· log

1+

∑
l σ
−1
vc,le

−(m−µvc,l)2/2σ2
vc,l∑

l σ
−1
vc,le

−(m+µvc,l)
2/2σ2

vc,l

dm, (12)

in which J̄k denotes I(xi;mk|xi=+1, X̄
(i)
k ) and

(
µvc, σ

2
vc

)
can be updated according to (7). The mutual information
curve IEvnd in the EXIT chart can be obtained, denoted by

IEvnd(λ, σcv) = I (x;mcv) =
1

2n−1

dv∑
j=2

λj J̃j
(
σ2
cv

)
, (13)

where

J̃j
(
σ2
cv

)
=
∑2n−1

k=1
J̄k
(
µs+(j−1)σ2

cv

/
2, σ2

s+(j−1)σ2
cv

))
and

(
µs, σ

2
s

)
can be estimated in (9) for a given σ2

cv . The
other curve IAcnd in the EXIT chart is the same as that of [3],
and we write it here with σcv as the input:

IAcnd(σcv) = 1− J(J−1(1− J(σcv))/
√
dc − 1). (14)

3.3. LPDC Code Design by Linear Programming

For simplicity, we only consider a singleton distribution for
the check node degree and optimize the variable node degree
distribution in the framework of the LP used in [7, Ch. 4].
We assume that all users share the same degree distribution in
the symmetric channel; here for simplicity we omit the super-
script for user index. The LDPC code design can be formu-
lated as the following optimization problem:

max

dv∑
j=2

λj
j

s. t.
∑dv

j=2
λj = 1, λj ∈ [0, 1],

λ2 (dc − 1) ≤ exp
{
h2
}
− ε,

IEvnd(λ, σcv)≥IAcnd (σcv)+εghs, σcv∈ [0, σcv,mid) , or,

IEvnd(λ, σcv)≥IAcnd (σcv)+ε, σcv∈ [σcv,mid, σcv,max] ,

(15)
where the second constraint is the stability condition [9] with
ε = 10−4 and in the third constraint we add a “good head s-
tart” gap [3] εghs = 0.01 between the curves IEvnd and IAcnd
at the initial stage (where the slope of IAcnd in [3, Fig. 3] is
less than 1), such that the code rates will be close to the ca-
pacity region bound with good BER performance.

Notice that for a given σcv , IEvnd(λ, σcv) is a linear func-
tion of λ and IAcnd (σcv) can be directly computed by (14),
such that (15) can be solved by an LP solver for a number of

Fig. 4. Simulation results for the designed LDPC codes given
in Table 1 for 2-user GMAC and 3-user GMAC

points of σcv within the intervals in (15).

4. NUMERICAL RESULTS

We show the simulation results for the designed LDPC codes
using the method we proposed. The corresponding parity
check matrices are generated by random constructions using
the tool in [17], where all the length-4 cycles are removed.
The code block lengths are chosen as 20000, and the max-
imum number of decoding iterations is set to 200. The op-
timized degree distributions are shown in Table 1. For the
2-user GMAC, we compare the performance of the LDPC
code designed by our proposed method with that by [10] for
R = 0.3 and R = 0.6, respectively. As can be seen from
Fig. 4, two curves are overlapping for R = 0.3, while for
R = 0.6, using the method we proposed, there is an improve-
ment of 0.5dB over that by [10] at BER = 10−4. For refer-
ence, the performance of the designed codes for the 3-user
GMAC with R = 0.4 is also shown in Fig. 4, where we can
see that the designed code has a decoding threshold close to
the Shannon limit.

Table 1. Optimized degree distribution for symmetric GMAC
2-GMAC 3-GMAC

Rate 0.3 0.6 0.4

dc 6 9 6

λ(x)

λj j λj j λj j

0.2699 2 0.4629 2 0.5127 2

0.2414 3 0.1173 3 0.0074 3

0.0371 10 0.2773 52 0.2666 16

0.2163 13 0.0618 55 0.2133 100

0.2353 100 0.0807 100

Shannon limit -1.832 dB 3.857 dB 1.665 dB
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