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ABSTRACT

We investigate the use of discrete-time analog joint soohznel
coding (JSCC) in an amplify-and-forward two-hop wirelesswork
subject to Rayleigh fading channels. The discrete-timéagrsource
is compressed using either 2:1, 3:1 or 4:1 low delay dimensio
compression parametric and non-parametric analog JSCCredDu
sults show that both, non-parametric and parametric, grsaloemes
outperform an ideal fully digital system based on scalantjmation,
while the performance obtained with non parametric mappisgu-
perior to that achieved with parametric systems.

Index Terms— Joint Source Channel Coding, Analog Map-
pings, Bandwidth Compression

1. INTRODUCTION

Discrete-time analog Joint Source Channel Coding (JSC&) &
bust, low complexity and low delay alternative to tradigbudigital
systems based on the use of separated source and chanragrmsnco
for the transmission of analog sources [1-11]. Most of thekvem
analog JSCC has focused on point-to-point networks [1-8]lew
only a few studies, such as [9-11], have proposed the afiplica
of analog schemes for relay networks. The authors in [9]yaeal
the use of parametric analog JSCC [6] for a two-hop netwo?k, [1
where the relay compresses its own information togethen thie
received data from another source node and then forwardsat t
sink node. In [10], a non-parametric analog coding [2] soladon
the relay channel [13] is proposed. In this case, the ddgimaan
also observe the source. However, both [9, 10] considerfading
channels. Different from [9, 10], Rayleigh fading chanresls con-
sidered in [11], which proposes the use of parametric and&gC
over a relay channel with the Amplify-and-Forward (AF) mool.
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performance. The advantage of the novel non-parametrienses
over parametric mappings increases with the compressimn ra

The remainder of this paper is organized as follows. Se@ion
presents the system model, while Section 3 discusses the non
parametric mapping optimization. Numerical results aszuksed
in Section 4 and some final comments are given in Section 5.

2. SYSTEM MODEL

The network topology consists of three nodes: sousgerélay R)
and destinationl). We consider that the direct link betwegrand
D is blocked due to the effects of strong shadowing. The source
generates discrete-time memoryless Gaussian sampléth zero
mean and variance? = 1. Then, a group ofV source samples
are encoded into a single channel symbdhrough analog JSCC
as detailed in Section 3. We also consider thgs|*] = 1, where
E[-] is the expectation operator. Moreover, we denote the channe
fading envelopes by (from S to R) and g (from R to D), which
are identically and independent Rayleigh distributed wahance
o? = 1,4 € {h,g}, and are constant during the transmissior,of
changing independently from one symbol to another, cheriatic
thus of a quasi-static fading channel. In addition, simitaprevi-
ous work [11], it is assumed that the channel state infolonais
available only ai.

In the first hop, the channel symbeis transmitted through the
wireless channél so that the relay receives

yr =/ Psd; " hs+ wr,

where P; is the source power]; is the distance betweeéhandR,
v is the path loss exponent and is the additive Gaussian noise at

@)

In this paper, we propose a dimension-COmpression NONge relay with zero mean and varianeg, . Then, the relay compen-

parametric analog JSCC scheme in a two-hop network witheigty!
fading channels, where a half-duplex relay assists theceaunde.
We consider the AF protocol as we propose an all-analogessiog
communication system. A power constrained channel opéchiz
vector quantization (PCCOVQ) [2, 4] is considered as our-non
parametric analog coding, using low delay 2:1, 3:1, or 4metision
compression. The mappings are optimized for differentaimist-
neous CSNR at the destination. Finally, we compare nonapetrec
and parametric analog JSCC schemes with an ideal digitérsys
based on scalar quantization. The low delay analog codingnses,
based on either parametric or non parametric mappingsedatm
the digital system, while non-parametric mappings achtbeebest

*This work has been supported by CAPES and CNPq
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sates the loss in tH&R link by amplifying the received signal with
again

1 1
CNEWE T e, O
Yr Poh?di” + 03,
so that the relay transmitted channel symbol becomes
\/ PrPsd;" hs+ w,
Tr =VEP Byr = - (3)

P2t + o3,

where P, is the relay power. Then, the received signal at the desti-
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nation can be expressed as

_ \/PrPshgs \/PrdTgUJr
Vs (Psh? +dYo2)  +/d5(Psh? + dYo2,)

information

Y +wa, (4)

overall noise

whereds is the distance betwedR andD, andwq is the additive
Gaussian noise at the destination with zero mean and varhafp(;:
Using (4), the instantaneous CSNR at the destination isngye

__ E[|informationin (4)%] .
Yd = EJoveralmoisemn (417]* yleldmg

B P.P.h’g*
T Ppdig202, +dy(Psh? + dyo? )o2,.’

Yd (%)

3. ANALOG JOINT SOURCE CHANNEL CODING
SCHEMES

We considerN:1 dimension compression analog JSO@here a

very low complexity [14]. Therefore, the proposed decodamn-c

sists of the de-normalization of/7, a linear MMSE estima-

tor, the inverse transform functiofi,, ' (-) and the inverse map-
ping function M, *(-). The MMSE estimate of s is obtained
as$ = E[slya] = Rsy,Ry),,va [7], Where Ry, is the cross-

correlation between andy, and Ry, is the auto-correlation of
Y4, Which results in

VP Pohgds (Psh? + dYol,)
P, P;h2g? + P.d{g?cd, + o?,d5(Psh? + d{o?,)

§= ya. (8)
Then, the decoded symbol is given fy= T, '(8) = sign(3) \§|é
andx [s finally pbtained by simply applying in (7), so thatk =
M (0) = x0(0).

3.1.2. 3:1 and4:1 mappings

These schemes were initially proposed in [6] and have atstric
similar to the 2:1 mapping, but using other particular maggunc-

source vectok with N source symbols is compressed into a singletions. For the sake of brevity, we skip the details and werrésfe

channel symbok. Then, an estimate is obtained at the destination
based on the received observatignso that the system performance
can be measured in terms of the signal-to-distortion rdgéfined as

SDR = % whereD = E[||x — %] is the distortion measured as
the mean square error (MSE) betweeand its estimaté.

reader to [6] for detailed information.

3.2. Non-Parametric Dimension Compression Mappings

In order to improve the SDR performance of the analog JSCG map

We analyze the performance of both parametric and nonping schemes, we employ a PCCOVQ method, initially proposed
parametric analog JSCC. Parametric schemes can be regesenin [2] for the AWGN channel and extended in [4] to Rayleigh-fad

by simple non-linear functions, while non-parametric magp are
obtained through more complex optimization algorithmsriheo to
reduce the gap to the theoretic limits.

3.1. Parametric Dimension Compression Mappings

3.1.1. 2:1 mapping

The2:1 encoder consists of a mapping functibfy(-), a non-linear
transform functior?, (-) and a normalization factgy'r. We initially
encodeN = 2 source samples, = (z1, z2), into a single samplé

by

0 = Ms(x) = arg min ||x — xo(6)||%, ®
where x4(-) is a spiral-like function that map$g into x¢ =
(201, 202), given by [6]

i L
x0(0) = [“gné(?cwo oo 9} for 6 € R, @)

ando represents the distance between the two neighboring arms
the spiral.

We also employ a matching functidh, (9) = sign(0) [0|” in
order to improve the SDR performance by numerically optingz
the shape parameteralong witho [7]. Moreover, the normalization
factor /7 is used to ensure thét[|s|?] = E[\Wﬁ =1
before transmission.

At the decoder, we perform maximum likelihood (ML) demap-

ing channels. Here, we further extend the technique to ahtwyo-
network scenario

In the PCCOVQ encoder, th&-dimensional source space is
split into @ partitions,p = {Qo,Q1,...,Q¢g-1}. Therefore, if
x € €, the encoder assigns it to the discrete indeXhen, each
index: corresponds to a specific pulse amplitude modulation (PAM)
channel symbol, given by = Au;, wherew; is a unit distance
PAM signal in the one-dimensional channel space, ands the
constant distance between two neighboring channel symidie
Q-PAM symbol s is transmitted through the two-hop network ac-
cording to (4). At the receiver, the ML estimate ofs § = s +

VPs h VPrPs hg )

Instead of employing only one reconstruction codebook-opti

mized for all instantaneous CSNf; at the destination, we fol-
low [4, 8] and discretizey, into H uniform discrete values, given
by ~va4,x. Then, we optimize a different codebodk, € a
{bo,b1,...,br_1} for eachyq . Thus, the number of optimized
mappings is alsd{. Given a particular instantaneous CSNR, the
decoder searches for the closest discrete CSNR and chooses
its respective optimized reconstruction codebdok Then, the
oecoder chooses the indgxwhich minimizes||s — Awu;||>. Fi-
nally, with £ and ;7 we can obtaink ck,j, Wherecy ; is the
reconstruction vector frorb, = {ck,0,Ck,1,-- -, Cr,0—1}-

3.2.1. Simplified two-hop CSNR pdf

As discussed in [2], the aim of the PCCOVQ algorithm is to find
a vector quantizer that minimizes the distortion with a poaen-

ping, preeceded by linear minimum MSE (MMSE) estimation of Straint using the Lagrange multiplieg whiqh is usgd to control the
the channel input, a two-stage decoding scheme that in many e2Verage source powét,. However, we notice that in order to apply

vironments achieves near MMSE end-to-end performance witl

1Dimension expansion analog JSCC is not considered hers psrior-
mance over Rayleigh fading channels may be inferor [5].
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fihe PCCOVQ algorithm, we need to consider discretized Rgtyle

fadings for each hop (with respectii@ndg) as well as their respec-
tive pdfs. Then, in order to reduce the algorithm computetiave
follow [12] and resort to a high CSNR approximation of the Adtrg



[ S
\/Psh2d "

With this simplification, the pdf of the CSNR in (5) can be eegsed

by neglecting the noise varianeg, in (2), so that3 = iv.) Repeat or stop: If the difference between the cost function
in (10) at the current and at the previous iteration is smalle

than a convergence criterian then stop. Otherwise, repeat

as[12] all four steps again.
1 1
2y e 34 177,47, 2y
() = —= — | K1 | == 3.2.3. Impl tati iderati
+(7) 172 ST 1 oo © mplementation considerations
2y In order to efficiently implement the algorithm, we follow eope-
+2Ko N VAR dure known as noisy channel relaxation [2], so that the syste
initially optimized for a very low7y, by setting a high value fok
wherey, = z d,, andvz = Fz’ 4 are the per hop average CSNR, and an initial set of ramp mappings. After the optimizatidrire

first codebooks for the initial value of, we reduce\ in order to ob-
and Ko(+) and K (-) are the zero-order and first order modified {in new mappings optimized for a highgy. As P, andP, increase

Bessel function of the second kind [15], respectively. when)\ is reduced, both source and relay noise variances are fixed at
Then, we consider that both source and relay use the same powgz _

7 =1,4i € {w,,wa}.
(P, = Ps) and, similar to [4], we employ a uniform quantizer to ob-
tain the discrete CSNR valueg, .. and their respective probabilities
P+, (k) with the simplified pdf in (9). Thus, the optimization prob-
lem can be expressed as

in = [D(p,a,A) + \P,], 10
(min | [D(p,a,A) ] (10)
where
D(p,a,A) = w / Di(x)fa(x)dx  (11)
=0

is the average total distortion per source vestovheref, (x) is the
pdf of x and

Q-1H-1

D) = %= 3 3 pa

j=0 k=0

p(ili k) Ix = esl® (12)

is the distortion ofx associated with the partition wherep.,, (k)

is the probability of the discretized CSNR, «, andp(j|i, k) is the
probability of receiving indey given that: was transmitted with a
CSNR7g, k- FinaIIy, P in (10) is the power per channel symbol,
with Py = A? 35201 Jwil|* [, fa(x)dx

3.2.2. Optimization algorithm
The minimization of (10) can be achieved by a modified genzdl
Lloyd algorithm [16], which consists of four steps.

i.) Optimize the partitioning>: Considering an initiah and an
initial codebooka (details in Section 3.2.3), the optimal par-
tition that minimizesp in (10) is

Qi = {x|Gi(x) < G;(x),Vj € i}, (13)
wherei = {0,1,...,Q — 1} is the index set ang;(x)
D;(x) + AA?||u;||? is the distortion cost function.

Optimize the codebook set Given A and the updated par-
tition p, the optimal codebook set is formed by elements
given by [4]

P p (jlis k) Jq, xfz(x)dx
Ez 0 p -]‘7’7k) fgl fz(x)dx

Optimize A: The parameterA is numerically optimized
through an unconstrained nonlinear iterative methetich
minimizes (10).

ici,

i)

(14)

Ck,j =

ii.)

2A readily implemented option the for unconstrained norineptimiza-
tion, used throughout the numerical results of this papéhgf mi nsear ch
function in Matla® .
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3.2.4. H = 1 optimized mapping

In order to have a simplified version of the non-parametrigpma
ping scheme, we consider the case with a single codelbock
{co,c1,...,co—1} taking into account all th& elements in a set
of instantaneous CSNRy ;, for each”,. The same optimization
algorithm can be used by just replacing (12) by

Q-1G-1
Z > puB)pGli k) Ix —cl*,  (15)
j=0 k=0
while the optimal codebook in (14) simplifies to
G—-1 ;
e p (i, k X fo(x)dx
S (S Pl k) fo XG0

Zz 0 p j‘lvk) fﬂi fI(X)dX 7

3.2.5. Optimized mappings without the simplified CSNR pdf

If the simplified two-hop CSNR pdf in (9) is not considerederh
in the mapping optimization we have to considgr discretized

Rayleigh fadings for each hop, as well as their respectivd-pr
abilities. As a result, the algorithm needs to han#ié discrete

instantaneous CSNR values. Many of thé$é discrete CSNR
values are very similar, which is highly inefficient when quamed

to the proposed scheme with uniformly distributed disc@8NR

values. The distortion at associated with partitiohwould be

IQ
N2

j=0

1H-1H-1
Z Z (Dpg(m)p(jli, L, m)||x — crm ;]I

- (17)

Di(x) =

and the optimal codebook is given by

S plislm) fo, xfx(x)dx
S il Lm) fo, fo(x)dx

Cim,j =

,jei (18)

3.3. Optimal Performance Theoretically Attainable (OPTA)

The OPTA equates the rate distortion function to the chacayghc-
ity [17], which in the case of the two-hop channel with AF géfey
must take into account all possible realizations for bbthnd g.
Thus,

2
Moy (%5 ) = [ [1om0 (14 20) o0 12 @dgn, 19)
[¢]

where f,2 (h) and f,2 (g) are exponentially distributed.
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3.4. Analog versus Digital Coding
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Fig. 3. SDR performances. average CSNR at destinatiof, of

the 4:1 analog coding schemes over AF two-hop relaying.

1.7 dB and 1.9 dB. For high,, the performance of all analog
schemes are similar, with the non-parametric scheme kiith 128
improving only 0.3 dB in terms of SDR with respect to the cake o
H = 1. The 3:1 and 4:1 systems based on non-parametric mappings
with H = 128 also present a gain of around 0.3 dB with respect to
the H = 1 case, as shown in Figures 2 and 3. It is relevant, how-
ever, that for these compression ratios the improvemeiatirodd by
using non-parametric mappings rather that parametric snggite
substantial, much more significant that for the 2:1 case.

We also compare the non-parametric schemes with and without
the CSNR pdf simplification, considerirtg = 128 for the case with
the simplified pdf andZ? = 400 for the case without the simplifi-
cation. As show in Figure 1, the SDR performance in both cases
almost the same, but it is important to remark that with theppsed
simplification the computational complexity for mappingiopza-
tion is greatly reduced.

Notice that, as shown in Figures 1 to 3, for all the compressio
ratios the non-parametric mappings outperform the ideglalisys-
tem. This occurs even though the analog coding scheme hdg nea

Similar to [1, 10, 11], we compare the considered analog JSC@ero delay, while the ideal digital system has, in theoryirdimite

schemes with an ideal digital/-PAM system which includes an

delay. A practical digital system, with a finite delay, woalchieve

optimum g-level non-uniform scalar quantizer [18] that maps the even worse performance.

discrete-time memoryless Gaussian analog source vecioto a
discrete set of values. After quantization, we assume aai digital
source encoder where the average codeword length is eqtia to
source entropy. Finally, after ideal (capacity achieviciggnnel cod-
ing, the encoded bits are modulated in a one-dimensiF&aPAM
constellation with Gray mapping. Please see [1, 8, 11] fditamhal
details to calculate the OPTA of the ideal digital systemjolvhs
an optimistic bound on the performance of digital systensetan
scalar quantization.

4. SIMULATION RESULTS

In this section we numerically evaluate the SDR performaridhe

5. CONCLUSION

We have presented a low delay discrete-time non-paransetalog
JSCC scheme for the AF two-hop relaying network with Rayleig
fading channels. Simulation results have shown that thelnmn-
parametric schemes outperform the existing parametris,onith
the performance advantage increasing with the compresaiim
Moreover, the systems based on low delay non-parametripimgp
easily outperform a fully ideal digital system based on acglian-
tization and infinite block length. Practical source andneted dig-
ital encoders would perform even worse than the consideteal i
scheme, and they would still experience relatively longgel while

analog JSCC scheme as a function of the average CSNR at the dége low delay analog schemes operate on a sample-by-saagite b

tination, 7,;, comparing it with the OPTA and with the ideal digi-
tal communication system defined before. In the case of tie no
parametric schemes, we considet Gaussian source samplé€p=
256 mapping samples anrd= 10~*. We also assume thé. = P,
V=2, Jﬁ,r = Uﬁ,d =1,andd; =d2 = 1.

In Figure 1, we can observe that the gaps to the OPTA,at
10 dB for the 2:1 non-parametric mapping with = {128,12, 1}
and for the 2:1 parametric scheme are, respectively, 1.2 dBJB,
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