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ABSTRACT

We investigate the use of discrete-time analog joint sourcechannel
coding (JSCC) in an amplify-and-forward two-hop wireless network
subject to Rayleigh fading channels. The discrete-time analog source
is compressed using either 2:1, 3:1 or 4:1 low delay dimension-
compression parametric and non-parametric analog JSCC. Our re-
sults show that both, non-parametric and parametric, analog schemes
outperform an ideal fully digital system based on scalar quantization,
while the performance obtained with non parametric mappings is su-
perior to that achieved with parametric systems.

Index Terms— Joint Source Channel Coding, Analog Map-
pings, Bandwidth Compression

1. INTRODUCTION

Discrete-time analog Joint Source Channel Coding (JSCC) isa ro-
bust, low complexity and low delay alternative to traditional digital
systems based on the use of separated source and channel encoders
for the transmission of analog sources [1–11]. Most of the work on
analog JSCC has focused on point-to-point networks [1–8], while
only a few studies, such as [9–11], have proposed the application
of analog schemes for relay networks. The authors in [9] analyze
the use of parametric analog JSCC [6] for a two-hop network [12],
where the relay compresses its own information together with the
received data from another source node and then forwards it to a
sink node. In [10], a non-parametric analog coding [2] scheme for
the relay channel [13] is proposed. In this case, the destination can
also observe the source. However, both [9, 10] consider non-fading
channels. Different from [9, 10], Rayleigh fading channelsare con-
sidered in [11], which proposes the use of parametric analogJSCC
over a relay channel with the Amplify-and-Forward (AF) protocol.

In this paper, we propose a dimension-compression non-
parametric analog JSCC scheme in a two-hop network with Rayleigh
fading channels, where a half-duplex relay assists the source node.
We consider the AF protocol as we propose an all-analog-processing
communication system. A power constrained channel optimized
vector quantization (PCCOVQ) [2, 4] is considered as our non-
parametric analog coding, using low delay 2:1, 3:1, or 4:1 dimension
compression. The mappings are optimized for different instanta-
neous CSNR at the destination. Finally, we compare non-parametric
and parametric analog JSCC schemes with an ideal digital system
based on scalar quantization. The low delay analog coding schemes,
based on either parametric or non parametric mappings, outperform
the digital system, while non-parametric mappings achievethe best
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performance. The advantage of the novel non-parametric schemes
over parametric mappings increases with the compression ratio.

The remainder of this paper is organized as follows. Section2
presents the system model, while Section 3 discusses the non-
parametric mapping optimization. Numerical results are discussed
in Section 4 and some final comments are given in Section 5.

2. SYSTEM MODEL

The network topology consists of three nodes: source (S), relay (R)
and destination (D). We consider that the direct link betweenS and
D is blocked due to the effects of strong shadowing. The source
generates discrete-time memoryless Gaussian samplesx with zero
mean and varianceσ2

x = 1. Then, a group ofN source samples
are encoded into a single channel symbols through analog JSCC
as detailed in Section 3. We also consider thatE[|s|2] = 1, where
E[·] is the expectation operator. Moreover, we denote the channel
fading envelopes byh (from S to R) andg (from R to D), which
are identically and independent Rayleigh distributed withvariance
σ2
i = 1, i ∈ {h, g}, and are constant during the transmission ofs,

changing independently from one symbol to another, characteristic
thus of a quasi-static fading channel. In addition, similarto previ-
ous work [11], it is assumed that the channel state information is
available only atD.

In the first hop, the channel symbols is transmitted through the
wireless channelh so that the relay receives

yr =

√

Ps d
−ν
1 h s+ wr, (1)

wherePs is the source power,d1 is the distance betweenS andR,
ν is the path loss exponent andwr is the additive Gaussian noise at
the relay with zero mean and varianceσ2

wr
. Then, the relay compen-

sates the loss in theS-R link by amplifying the received signal with
a gain

β =

√

1

E[|yr|2]
=

1
√

Ps h2 d−ν
1 + σ2

wr

, (2)

so that the relay transmitted channel symbol becomes

xr =
√
Pr β yr =

√

PrPs d
−ν
1 h s+ wr

√

Ps h2 d−ν
1 + σ2

wr

(3)

wherePr is the relay power. Then, the received signal at the desti-
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nation can be expressed as

yd =

√
PrPs h g s

√
dν2(Psh2 + dν1σ

2
wr

)
︸ ︷︷ ︸

information

+

√
Prdν1 g wr

√
dν2(Psh2 + dν1σ

2
wr

)
+wd

︸ ︷︷ ︸

overall noise

, (4)

whered2 is the distance betweenR andD, andwd is the additive
Gaussian noise at the destination with zero mean and varianceσ2

wd
.

Using (4), the instantaneous CSNR at the destination is given by

γd = E[|information in (4)|2]
E[|overall noise in (4)|2] , yielding

γd =
PrPsh

2g2

Prdν1g
2σ2

wr
+ dν2(Psh2 + dν1σ

2
wr

)σ2
wd

. (5)

3. ANALOG JOINT SOURCE CHANNEL CODING
SCHEMES

We considerN :1 dimension compression analog JSCC1 where a
source vectorx with N source symbols is compressed into a single
channel symbols. Then, an estimatêx is obtained at the destination
based on the received observationyd, so that the system performance
can be measured in terms of the signal-to-distortion ratio,defined as

SDR =
σ2

x
D

, whereD = E[‖x − x̂‖2] is the distortion measured as
the mean square error (MSE) betweenx and its estimatêx.

We analyze the performance of both parametric and non-
parametric analog JSCC. Parametric schemes can be represented
by simple non-linear functions, while non-parametric mappings are
obtained through more complex optimization algorithms in order to
reduce the gap to the theoretic limits.

3.1. Parametric Dimension Compression Mappings

3.1.1. 2:1 mapping

The2:1 encoder consists of a mapping functionMδ(·), a non-linear
transform functionTϕ(·) and a normalization factor

√
τ . We initially

encodeN = 2 source samples,x = (x1, x2), into a single sampleθ
by

θ = Mδ(x) = argmin
θ

||x− xθ(θ)||2, (6)

where xθ(·) is a spiral-like function that mapsθ into xθ =
(xθ1, xθ2), given by [6]

xθ(θ) =

[
sign(θ) δ

π
θ sin θ

δ
π
θ cos θ

]

for θ ∈ R, (7)

andδ represents the distance between the two neighboring arms of
the spiral.

We also employ a matching functionTϕ(θ) = sign(θ) |θ|ϕ in
order to improve the SDR performance by numerically optimizing
the shape parameterϕ along withδ [7]. Moreover, the normalization
factor

√
τ is used to ensure thatE[|s|2] = E[|Tϕ(Mδ(x))√

τ
|2] = 1

before transmission.
At the decoder, we perform maximum likelihood (ML) demap-

ping, preeceded by linear minimum MSE (MMSE) estimation of
the channel input, a two-stage decoding scheme that in many en-
vironments achieves near MMSE end-to-end performance with

1Dimension expansion analog JSCC is not considered here as its perfor-
mance over Rayleigh fading channels may be inferor [5].

very low complexity [14]. Therefore, the proposed decoder con-
sists of the de-normalization of

√
τ , a linear MMSE estima-

tor, the inverse transform functionT−1
ϕ (·) and the inverse map-

ping function M−1
δ (·). The MMSE estimate of s is obtained

as ŝ = E[s|yd] = RsydR
−1
ydyd

yd [7], whereRsyd is the cross-
correlation betweens andyd andRydyd is the auto-correlation of
yd, which results in

ŝ =

√
PrPshgd

ν
2(Psh

2 + dν1σ
2
wr

)

PrPsh2g2 + Prdν1g
2σ4

wr
+ σ2

wd
dν2(Psh2 + dν1σ

2
wr

)
yd. (8)

Then, the decoded symbol is given byθ̂ = T−1
ϕ (ŝ) = sign(ŝ) |ŝ|

1

ϕ

and x̂ is finally obtained by simply applyinĝθ in (7), so thatx̂ =

M−1
δ (θ̂) = xθ(θ̂).

3.1.2. 3:1 and4:1 mappings

These schemes were initially proposed in [6] and have a structure
similar to the 2:1 mapping, but using other particular mapping func-
tions. For the sake of brevity, we skip the details and we refer the
reader to [6] for detailed information.

3.2. Non-Parametric Dimension Compression Mappings

In order to improve the SDR performance of the analog JSCC map-
ping schemes, we employ a PCCOVQ method, initially proposed
in [2] for the AWGN channel and extended in [4] to Rayleigh fad-
ing channels. Here, we further extend the technique to a two-hop
network scenario

In the PCCOVQ encoder, theN -dimensional source space is
split into Q partitions,p = {Ω0,Ω1, . . . ,ΩQ−1}. Therefore, if
x ∈ Ωi, the encoder assigns it to the discrete indexi. Then, each
indexi corresponds to a specific pulse amplitude modulation (PAM)
channel symbol, given bys = ∆ui, whereui is a unit distance
PAM signal in the one-dimensional channel space, and∆ is the
constant distance between two neighboring channel symbols. The
Q-PAM symbol s is transmitted through the two-hop network ac-
cording to (4). At the receiver, the ML estimate ofs is ŝ = s +√

dν
1
wr√

Ps h
+

√
dν
2
(Psh2+dν

1
σ2
wr

)wd√
PrPs hg

.
Instead of employing only one reconstruction codebook opti-

mized for all instantaneous CSNRγd at the destination, we fol-
low [4, 8] and discretizeγd into H uniform discrete values, given
by γd,k. Then, we optimize a different codebookbk ∈ a =
{b0,b1, . . . ,bH−1} for eachγd,k. Thus, the number of optimized
mappings is alsoH . Given a particular instantaneous CSNR, the
decoder searches for the closest discrete CSNRγd,k and chooses
its respective optimized reconstruction codebookbk. Then, the
decoder chooses the indexj which minimizes‖ŝ−∆uj‖2. Fi-
nally, with k and j we can obtainx̂ = ck,j , whereck,j is the
reconstruction vector frombk = {ck,0, ck,1, . . . , ck,Q−1}.

3.2.1. Simplified two-hop CSNR pdf

As discussed in [2], the aim of the PCCOVQ algorithm is to find
a vector quantizer that minimizes the distortion with a power con-
straint using the Lagrange multiplierλ, which is used to control the
average source powerPs. However, we notice that in order to apply
the PCCOVQ algorithm, we need to consider discretized Rayleigh
fadings for each hop (with respect toh andg) as well as their respec-
tive pdfs. Then, in order to reduce the algorithm computations, we
follow [12] and resort to a high CSNR approximation of the AF gain
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by neglecting the noise varianceσ2
wr

in (2), so thatβ̃ = 1
√

Psh2d
−ν
1

.

With this simplification, the pdf of the CSNR in (5) can be expressed
as [12]

fγ(γ) =
2γ e

−γ

(

1

γ1
+ 1

γ2

)

γ1γ2

[(
γ1 + γ2√

γ1γ2

)

K1

(
2γ√
γ1γ2

)

+2K0

(
2γ√
γ1γ2

)]

,

(9)

whereγ1 =
Psσ

2

h

σ2
wr

dν
1

andγ2 =
Prσ

2

g

σ2
wd

dν
2

are the per hop average CSNR,

and K0(·) and K1(·) are the zero-order and first order modified
Bessel function of the second kind [15], respectively.

Then, we consider that both source and relay use the same power
(Pr = Ps) and, similar to [4], we employ a uniform quantizer to ob-
tain the discrete CSNR valuesγd,k and their respective probabilities
pγd(k) with the simplified pdf in (9). Thus, the optimization prob-
lem can be expressed as

min
{p,a,∆}

= [D(p, a,∆) + λPs], (10)

where

D(p, a,∆) =
E[‖x− x̂‖2]

N
=

Q−1∑

i=0

∫

Ωi

Di(x)fx(x)dx (11)

is the average total distortion per source vectorx, wherefx(x) is the
pdf of x and

Di(x) =
1

N

Q−1∑

j=0

H−1∑

k=0

pγd(k)p(j|i, k)‖x− ck,j‖2 (12)

is the distortion ofx associated with the partitioni, wherepγd(k)
is the probability of the discretized CSNRγd,k, andp(j|i, k) is the
probability of receiving indexj given thati was transmitted with a
CSNRγd,k. Finally, Ps in (10) is the power per channel symbol,
with Ps = ∆2 ∑Q−1

i=0 ‖ui‖2
∫

Ωi
fx(x)dx.

3.2.2. Optimization algorithm

The minimization of (10) can be achieved by a modified generalized
Lloyd algorithm [16], which consists of four steps.

i.) Optimize the partitioningp: Considering an initialλ and an
initial codebooka (details in Section 3.2.3), the optimal par-
tition that minimizesp in (10) is

Ωi = {x|Gi(x) ≤ Gj(x),∀j ∈ i}, i ∈ i, (13)

wherei = {0, 1, . . . , Q − 1} is the index set andGi(x) =
Di(x) + λ∆2‖ui‖2 is the distortion cost function.

ii.) Optimize the codebook seta: Given∆ and the updated par-
tition p, the optimal codebook seta is formed by elements
given by [4]

ck,j =

∑Q−1
i=0 p(j|i, k)

∫

Ωi
xfx(x)dx

∑Q−1
i=0 p(j|i, k)

∫

Ωi
fx(x)dx

, j ∈ i. (14)

iii.) Optimize ∆: The parameter∆ is numerically optimized
through an unconstrained nonlinear iterative method2 which
minimizes (10).

2A readily implemented option the for unconstrained nonlinear optimiza-
tion, used throughout the numerical results of this paper, is thefminsearch
function in MatlabR© .

iv.) Repeat or stop: If the difference between the cost function
in (10) at the current and at the previous iteration is smaller
than a convergence criterionǫ, then stop. Otherwise, repeat
all four steps again.

3.2.3. Implementation considerations

In order to efficiently implement the algorithm, we follow a proce-
dure known as noisy channel relaxation [2], so that the system is
initially optimized for a very lowγd by setting a high value forλ
and an initial set of ramp mappings. After the optimization of the
first codebooks for the initial value ofλ, we reduceλ in order to ob-
tain new mappings optimized for a higherγd. AsPs andPr increase
whenλ is reduced, both source and relay noise variances are fixed at
σ2
i = 1, i ∈ {wr, wd}.

3.2.4. H = 1 optimized mapping

In order to have a simplified version of the non-parametric map-
ping scheme, we consider the case with a single codebookb =
{c0, c1, . . . , cQ−1} taking into account all theG elements in a set
of instantaneous CSNRγd,k for eachγd. The same optimization
algorithm can be used by just replacing (12) by

Di(x) =
1

N

Q−1∑

j=0

G−1∑

k=0

pγd(k)p(j|i, k)‖x− cj‖2, (15)

while the optimal codebook in (14) simplifies to

cj =

G−1∑

k=0

pγd(k)

∑Q−1
i=0 p(j|i, k)

∫

Ωi
xfx(x)dx

∑Q−1
i=0 p(j|i, k)

∫

Ωi
fx(x)dx

, j ∈ i. (16)

3.2.5. Optimized mappings without the simplified CSNR pdf

If the simplified two-hop CSNR pdf in (9) is not considered, then
in the mapping optimization we have to considerH discretized
Rayleigh fadings for each hop, as well as their respective prob-
abilities. As a result, the algorithm needs to handleH2 discrete
instantaneous CSNR values. Many of theseH2 discrete CSNR
values are very similar, which is highly inefficient when compared
to the proposed scheme with uniformly distributed discreteCSNR
values. The distortion ofx associated with partitioni would be

Di(x) =
1

N

Q−1∑

j=0

H−1∑

l=0

H−1∑

m=0

ph(l)pg(m)p(j|i, l,m)‖x− cl,m,j‖2

(17)
and the optimal codebook is given by

cl,m,j =

∑Q−1
i=0 p(j|i, l, m)

∫

Ωi
xfx(x)dx

∑Q−1
i=0 p(j|i, l,m)

∫

Ωi
fx(x)dx

, j ∈ i. (18)

3.3. Optimal Performance Theoretically Attainable (OPTA)

The OPTA equates the rate distortion function to the channelcapac-
ity [17], which in the case of the two-hop channel with AF relaying
must take into account all possible realizations for bothh and g.
Thus,

N log10

(
σ2
x

D

)

=

∫

h

∫

g
log10 (1 + γd) fh2(h)fg2(g)dgdh, (19)

wherefh2(h) andfg2(g) are exponentially distributed.
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Fig. 1. SDR performancevs. average CSNR at destination (γd) of
the 2:1 analog coding schemes over AF two-hop relaying.
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Fig. 2. SDR performancevs. average CSNR at destination (γd) of
the 3:1 analog coding schemes over AF two-hop relaying.

3.4. Analog versus Digital Coding

Similar to [1, 10, 11], we compare the considered analog JSCC
schemes with an ideal digitalM -PAM system which includes an
optimum q-level non-uniform scalar quantizer [18] that maps the
discrete-time memoryless Gaussian analog source vectorx into a
discrete set of values. After quantization, we assume an ideal digital
source encoder where the average codeword length is equal tothe
source entropy. Finally, after ideal (capacity achieving)channel cod-
ing, the encoded bits are modulated in a one-dimensional256-PAM
constellation with Gray mapping. Please see [1,8,11] for additional
details to calculate the OPTA of the ideal digital system, which is
an optimistic bound on the performance of digital systems based on
scalar quantization.

4. SIMULATION RESULTS

In this section we numerically evaluate the SDR performanceof the
analog JSCC scheme as a function of the average CSNR at the des-
tination, γd, comparing it with the OPTA and with the ideal digi-
tal communication system defined before. In the case of the non-
parametric schemes, we consider104 Gaussian source samples,Q =
256 mapping samples andǫ = 10−4. We also assume thatPr = Ps,
ν = 2, σ2

wr
= σ2

wd
= 1, andd1 = d2 = 1.

In Figure 1, we can observe that the gaps to the OPTA atγd =
10 dB for the 2:1 non-parametric mapping withH = {128, 12, 1}
and for the 2:1 parametric scheme are, respectively, 1.2 dB,1.5 dB,
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Digital 256−PAM

Fig. 3. SDR performancevs. average CSNR at destination (γd) of
the 4:1 analog coding schemes over AF two-hop relaying.

1.7 dB and 1.9 dB. For highγd, the performance of all analog
schemes are similar, with the non-parametric scheme withH = 128
improving only 0.3 dB in terms of SDR with respect to the case of
H = 1. The 3:1 and 4:1 systems based on non-parametric mappings
with H = 128 also present a gain of around 0.3 dB with respect to
theH = 1 case, as shown in Figures 2 and 3. It is relevant, how-
ever, that for these compression ratios the improvement obtained by
using non-parametric mappings rather that parametric onesis quite
substantial, much more significant that for the 2:1 case.

We also compare the non-parametric schemes with and without
the CSNR pdf simplification, consideringH = 128 for the case with
the simplified pdf andH2 = 400 for the case without the simplifi-
cation. As show in Figure 1, the SDR performance in both casesis
almost the same, but it is important to remark that with the proposed
simplification the computational complexity for mapping optimiza-
tion is greatly reduced.

Notice that, as shown in Figures 1 to 3, for all the compression
ratios the non-parametric mappings outperform the ideal digital sys-
tem. This occurs even though the analog coding scheme has nearly
zero delay, while the ideal digital system has, in theory, aninfinite
delay. A practical digital system, with a finite delay, wouldachieve
even worse performance.

5. CONCLUSION

We have presented a low delay discrete-time non-parametricanalog
JSCC scheme for the AF two-hop relaying network with Rayleigh
fading channels. Simulation results have shown that the novel non-
parametric schemes outperform the existing parametric ones, with
the performance advantage increasing with the compressionratio.
Moreover, the systems based on low delay non-parametric mappings
easily outperform a fully ideal digital system based on scalar quan-
tization and infinite block length. Practical source and channel dig-
ital encoders would perform even worse than the considered ideal
scheme, and they would still experience relatively long delays, while
the low delay analog schemes operate on a sample-by-sample basis.
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