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ABSTRACT

The static resource allocation which is usually assumed for
the DSL physical layer leaves unused a significant portion of
the achievable rate region. An alternative approach is to di-
vide time into slots of short duration, and to change the re-
source allocation from each time slot to the next. A cross-
layer scheduler then chooses a different resource allocation
setting for each time slot by defining a utility function for
each user n, and solving the corresponding network utility
maximization (NUM) problem. For spectrum coordination,
this NUM problem is non-convex and solving it is NP-Hard.
This paper therefore introduces a fast algorithm, referred to as
NUM-DSB, which converges to a local solution of the NUM
problem. NUM-DSB can be applied to any NUM problem,
regardless of the considered utility functions’s characteristics.
Simulation results show that NUM-DSB can compete with
the state of the art algorithm for smooth non-convex network
utility maximization.

Index Terms— DSL, Spectrum Coordination, Cross-
Layer Scheduling, Network Utility Maximization

1. INTRODUCTION

Dynamic spectrum management (DSM) techniques, which
are used in digital subscriber line (DSL) networks to com-
bat crosstalk, give rise to a rate region R which contains no
single point that simultaneously maximizes the data rate of all
users. Instead, there is a set of Pareto-optimal resource alloca-
tion settings that result in a data rate tuple on the edge of the
rate region. DSL networks commonly use one such Pareto-
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optimal resource allocation for an extended period of time,
thus leaving unused a significant portion of the rate region.

An alternative to this static resource allocation is to di-
vide time into slots of short duration, and to change the re-
source allocation from one time slot to the next. A cross-
layer scheduler then chooses one setting for each time slot
in accordance with upper layer requirements. To this end, the
cross-layer scheduler defines a non-decreasing utility function
Un(·) for each user n, and solves the corresponding network
utility maximization (NUM) problem

arg max
R∈R

∑
n

Un(Rn), (1)

where R is a vector containing the data rate Rn of each user
n in the network. Examples of such cross-layer schedulers
can be found in [1, 2, 3]. Many algorithms exist that solve
problem (1), see e.g. [4, 5].

The DSM technique under consideration in this paper is
spectrum coordination. For spectrum coordination, as well as
for many other DSM techniques, problem (1) is non-convex,
and finding its global optimum is NP-hard [6]. This is prob-
lematic, as a new NUM problem is to be solved for each time
slot, and as it is desirable for time slots to be short.

This paper therefore introduces a fast algorithm which
converges to a local solution of problem (1). The proposed
strategy is to construct successive convex lower bound ap-
proximations of R, which are denoted as R̃(s) where s
corresponds to a specific resource allocation. It is demon-
strated that for R̃(s), problem (1) is solved more easily. The
resulting NUM-DSB algorithm thus consists of solving a
sequence of NUM problems over different approximations
R̃(s). NUM-DSB can be applied to any NUM problem,
regardless of the characteristics of the utility functions.

The network performance gains that are enabled by a
cross-layer scheduling algorithm that employs NUM-DSB
have been demonstrated in [2]. In this paper, the performance
of NUM-DSB itself is compared to the performance of the
similar SJBR algorithm [7]. Results show that NUM-DSB,
which can be applied to a wider variety of NUM problems

3659978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



than SJBR, needs significantly fewer iterations to converge to
a local solution of (1).

2. DSL SYSTEM MODEL & CROSS-LAYER
SCHEDULING

Consider an N -user DSL system with K orthogonal sub
channels or tones. As spectrum coordination is considered,
each of these tones k is modeled as an interference channel

yk = Hkxk + zk. (2)

In (2), xk =
[
x1
k, . . . , x

N
k

]T
is a vector containing the trans-

mitted signal of each user. Also, let xn = [xn1 , . . . , x
n
K ]
T

and x =
[
x1T , . . . ,xN

T ]T . Similar vector notation will
be used for other signals, as well as for variables and func-
tions introduced later such as the bit loading, total power con-
sumption, and data rate. Furthermore, yk and zk contain the
received signal and noise of each user. The average power
of xnk is given as snk = ∆fE

{
|xnk |2

}
, with E{·} the ex-

pected value operator and ∆f the tone spacing. Also, let
σnk = ∆fE

{
|znk |2

}
be the average noise power received by

user n on tone k. Finally, Hk is the N × N channel matrix,
where [Hk]n,m = hn,mk is the transfer function between the
transmitter of user m and the receiver of user n, evaluated on
tone k. The maximum achievable bit loading for user n on
tone k, given the transmit powers sk, is calculated as

bnk (sk) = log2

(
1 +

1

Γ

|hn,nk |2snk∑
n 6=m |h

n,m
k |2smk + σnk

)
, (3)

with Γ the SNR gap to capacity. The data rate and total power
consumption of user n are respectively calculated as

Rn(bn) = fs
∑
k

bnk Pn(sn) =
∑
k

snk ,

where fs is the symbol rate.
The total transmit power of each user is limited to P tot.

The transmit spectrum of each user additionally has to sat-
isfy the spectral mask constraint sn ≤ smask. The set of all
possible power loadings of user n can thus be described as

Sn =
{
sn ∈ RK+ | Pn(sn) ≤ P tot and sn ≤ smask} . (4)

The set of all possible power loadings of the whole multi-user
system is S = S1× . . .×SN . The resulting set of achievable
bit loadings is

B =
{
b ∈ RN×K+ | ∃s ∈ S : b ≤ b(s)

}
(5)

Finally, the rate region of a DSL system that employs spec-
trum coordination can be defined as

R =
{
R ∈ RN+ | ∃b ∈ B : Rn = Rn(bn)

}
. (6)

The rate region R of a DSL network, for which tone spac-
ing is small relative to the coherence bandwidth of the power
transfer function, is a convex set [8].

A DSL system typically uses a fixed operating point for
the physical layer for an extended period of time. This operat-
ing point can be selected such that some minimal rate require-
ments are satisfied [9], or such that some degree of fairness
among users is achieved [10]. Due to this static resource al-
location, a significant portion of the rate region is left unused
and hence the DSL network is not used to its full potential.

An alternative to this static resource allocation is to divide
time into slots of short duration, and to change the resource
allocation from one time slot to the next. For each time slot
t, the cross-layer scheduler decides on the specific power al-
location s and resulting rate tuple R to be used. To this end,
the cross-layer scheduler assigns a utility function Un(·) to
each user n, and chooses the physical layer setting such that
it maximizes the sum of all utilities in the DSL network (1).

3. ALGORITHM DEVELOPMENT

As the rate region of a DSL system is convex [8], the solution
to problem (1) can be calculated by solving a sequence of
weighted rate sum maximization (WRS) problems [11]

arg max
R∈R

ωTR, (7)

where ω = [ω1, . . . , ωN ]T is a vector of weights. In the case
of spectrum coordination, as well as for many other DSM
techniques, problem (7) is non-convex on account of the bit
loading being a non-convex function of the power allocation
(3). Trying to find a globally optimal solution to problem
(7), and by extension to problem (1), therefore results in algo-
rithms of exceedingly high complexity. This is problematic as
a new NUM problem is to be solved for each time slot, and as
it is desirable for time slots to have a short duration in order
to be able to adapt fast to changing upper layer requirements.

Inspired by the distributed spectrum balancing (DSB) al-
gorithm for spectrum coordination [12], the proposed solution
is to construct successive per-user convex lower bound ap-
proximations of the rate region for which problem (7) can be
solved more easily. Approximations R̃(s) are constructed by
defining an approximation for the bit loading that is a convex
function of the power allocation sn. For each approximation
of the rate region, the following problem is solved

arg max
R∈R̃(s)

∑
n

Un(Rn). (8)

By iteratively constructing a new approximation of the rate
region at the solution of the previous iteration, a local solution
of problem (1) is found. The resulting algorithm is summa-
rized in Algorithm 1, and is referred to as Distributed Spec-
trum Balancing for Network Utility Maximization (NUM-
DSB). NUM-DSB can be applied to any NUM problem,
regardless of the characteristics of the utility functions.
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Algorithm 1. NUM-DSB

1: Initialize s(0) ∈ S
2: for ` = 0, 1, . . . do
3: Select a user n and construct R̃(s(`))
4: Set sn(`+1) = sn?, with sn? obtained from (8)
5: Set sm(`+1) = sm(`) ∀m 6= n
6: end for

In Subsection 3.1, it is explained how R̃(s) is constructed.
In Subsection 3.2, an algorithm is described that solves prob-
lem (8).

3.1. Approximation of the Rate Region

In each iteration ` of the NUM-DSB algorithm, a user n con-
structs its own convex lower bound approximation of the rate
regionR. Given the current iterate s(`), the approximation of
R is denoted as R̃(s(`)). Let it be clear that, although this is
not reflected in notation, R̃(s(`)) is specific to user n. In order
to construct R̃(s(`)), it is assumed that all other users do not
change their power allocation, i.e. sm(`+1) = sm(`) ,∀m 6=
n. No approximation is used for the calculation of the bit
loading of user n, i.e.

b̃n(sn; s(`)) = bn([s1(`)T

, . . . , snT , . . . , sN
(`)T

]T ). (9)

The bit loading of all other users m 6= n is however approxi-
mated with a lower bound hyperplane, i.e.

b̃m(sn; s(`)) = bm(s(`)) +βm(s(`)) ◦
(
sn − sn(`)

)
. (10)

A ◦ B denotes the Hadamard product of matrices A and B,
and βmk (sk

(`)) is the directional derivative of bmk (·) along the
nth vector in the standard basis of Rn evaluated at sk(`).

As the utility functions Un(Rn) may be undefined for
negative values of Rn, the approximation of the data rate for
each user should have a non-negative value. This requirement
is enforced by adding an additional constraint which guaran-
tees that the value of the approximate bit loading b̃mk remains
positive. Keeping in mind that βmk (sk

(`)) < 0, the appropri-
ate constraint is

snk ≤ ŝk = snk
(`) − max

m 6=n:

bmk (sk
(`))6=0

bmk (sk
(`))

βmk (sk(`))
. (11)

The resulting set of all possible power loadings and cor-
responding set of achievable approximate bit loadings are

S̃n(s(`)) = {sn ∈ Sn | sn ≤ ŝ} (12)

B̃(s(`)) =
{
b ∈ RN×K+ | ∃sn ∈ S̃n(s(`)) : b ≤ b̃(sn; s(`))

}
Finally, the approximate rate region is defined as

R̃(s(`)) =
{
R ∈ RN+ | ∃b ∈ B̃(s(`)) : Rn = Rn(bn)

}
.

(13)

Algorithm 2. CG algorithm for problem (8)

1: Initialize R(0) ∈ R̃(s(`))
2: for i = 0, 1, . . . do
3: Compute r′ = arg maxr∈R̃(s(`)) r

T ∇U(R̃(i))

4: Set sn(i+1) = (1− γ(i))sn(i) + γ(i)s′

5: Set R̃(i+1) = R(b̃(sn(i); s(`)))
6: end for

The same approximation of the rate region can straightfor-
wardly be applied to other non-convex resource allocation
problems, such as joint spectrum and signal coordination for
upstream DSL [13].

An important feature of R̃(s) is that the approximation of
the achievable rate is a lower bound on the actually achieved
rate, which is due the lower bound hyperplane approximation
used for the bit loading of users m 6= n. Combined with the
fact that Un(·) is monotonically increasing by definition, it
can be concluded that∑

n

Un
(
Rn(`)) =

∑
n

Un
(
Rn
(
b̃nk (snk

(`); s
(`)
k )
))

≤
∑
n

Un
(
Rn
(
b̃nk (snk

?; s
(`)
k )
))
≤
∑
n

Un
(
Rn(`+1)). (14)

It is thus seen that each iteration of NUM-DSB increases the
objective function value of problem (1).

3.2. Solving problem (8)

The algorithm presented here to solve problem (8) is based on
the conditional gradient (CG) method, and can be shown to
converge to the optimal solution of (8) if the utility functions
Un(·) are concave and continuously differentiable [14]. The
derivation of the algorithm demonstrates that solving problem
(8) is computationally far less demanding than directly solv-
ing (1). The conditional gradient algorithm for problem (8) is
outlined in Algorithm 2.

In case the considered utility functions are not concave
or not smooth, NUM-DSB can still be combined with other
existing WRS based algorithms for NUM. Examples include
a subgradient based dual decomposition algorithm that can be
applied to NUM problems with non-smooth utility functions,
or the monotonic optimization (MO) algorithm for NUM
problems with non-concave utility functions [11].

Algorithm 2 constructs a sequence of linear problems of
the form

sn′ = arg max
sn∈S̃n(s(`))

ωTR
(
b̃(sn; s(`))

)
, (15)

where ω is a vector of positive weights. Positivity of these
weights is guaranteed by the fact that the objective functions
Un(·) are increasing by definition. As problem (15) is convex,
it can be solved by applying a dual decomposition method,
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i.e. by dualizing the total power constraints
∑
k s

n
k ≤ P tot,

solving the resulting Lagrange dual problem, and extracting
the solution to problem (15). The Lagrangian of problem (15)
is given by

L(sn, λ) = ωTR
(
b̃(sn; s(`))

)
− λ
(∑

k

snk − P tot
)
, (16)

and the resulting Lagrange dual problem of (8) is

arg min
λ≥0

[
g(λ) = max

0≤sn≤ŝ
L(sn, λ)

]
. (17)

Problem (17) is a convex problem in a single variable λ, and
can be solved using a simple bisection method.

The Lagrange dual function g(λ) is evaluated by maxi-
mizingL(sn, λ) independently on each tone k, i.e. by solving
K optimization problems of the form

arg max
0≤snk≤ŝk

ωT b̃k(snk ; s
(`)
k )− λsnk . (18)

As problem (18) corresponds to a convex problem in a single
variable, its solution either satisfies the optimality condition
ωT ∂

∂snk
b̃k(snk ; s

(`)
k ) = λ, or lies on the boundary of the fea-

sible interval [0, s̄k] with s̄k = min(smask
k , ŝk). Therefore,

problem (18) is solved by the following expression. ωn/ log(2)

λ−
∑
m 6=n

ωmβmk (s
(`)
k )
− Γ

∑
m 6=n
|hnmk |

2
smk

(`) + σnk

|hnnk |
2


s̄k

0
(19)

Convergence of Algorithm 2 is straigforwardly estab-
lished from the results in [14] as follows. If the step size is
chosen as γ(i) = 2

2+i , then

U(R̃∗)− U
(
(1− γ(i))R̃(i) + γ(i)r′

)
≤ O(1/i), (20)

where R̃∗ is the solution to problem (8) [14]. As the ap-
proximation of the bit loading is a concave function of the
power allocation sn, it is readily seen that U

(
R(i+1)

)
≥

U
(
(1 − γ(i))R̃(i) + γ(i)r′

)
. Therefore, the following result

holds for Algorithm 2

U
(
R∗
)
− U

(
R(i+1)

)
≤ O(1/i). (21)

4. SIMULATION RESULTS

The performance of NUM-DSB is compared to the perfor-
mance of the SJBR algorithm of [7]. Like NUM-DSB, SJBR
solves a sequence of convex approximations of problem (1).
However, it differs from NUM-DSB in that it can only be
applied if the utility functions of problem (1) are smooth [7].
The performance of the Gauss-Seidel variant of SJBR is com-
pared to the performance of NUM-DSB.

Table 1. G.Fast parameter settings
Parameter Value Parameter Value
Pn,tot 4 dBm K 2047
fs 48 kHz ∆f 51.75 kHz
Γ 12.6 dB an 1 ∀n ∈ N

4 5 6 7 8 9
20

40
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80

100

Number of users N
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at
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ns

SJBR NUM-DSB

Fig. 1. Average number of iterations versus number of users
in the DSL system. Gauss-Seidel execution is considered for
both algorithms. All users sequentially update their transmit
spectrum once per iteration.

The DSL network under consideration connects 10 users
to a distribution point. The distance to the distribution point
ranges from 110m for user 1 up to 200m for user 10, increas-
ing with 10m for each consecutive user. The DSL networks
for which N ≤ 10 consist of the first N users of the above
10-user network. Parameter settings for the DSL system are
summarized in Table 1. The considered utility functions are
those of the minimal delay violation scheduler from [2], i.e.
Un(Rn) = −an

Rn . Spectral mask constraints are not included.
In Figure 1, the average number of outer iterations needed

for convergence are presented for both NUM-DSB and SJBR.
The algorithms are terminated when the decrease of the sum
utility between two iterations relative to the sum of the ob-
jective function value for these two iterations is smaller than
10−6. The average number of iterations is calculated over
100 random initializations of the transmit spectra s. It should
be noted that a single iteration of the SJBR algorithm has
a lower complexity that an iteration of the NUM-DSB al-
gorithm. However, the results show that NUM-DSB, which
can also be applied to a wider variety of NUM problems than
SJBR, needs significantly fewer iterations to converge.

5. CONCLUSION

The novel NUM-DSB algorithm for NUM based spectrum
coordination has been presented. NUM-DSB can be em-
ployed regardless of the specific characteristics of the utility
functions. Simulations have confirmed that NUM-DSB con-
verges exceedingly fast, which enables its use in the compu-
tationally demanding context of cross-layer scheduling.
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