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ABSTRACT

In the G.fast frequency range with strong levels of crosstalk,

nonlinear precoding (NLP) is proposed as a near-optimal

technique for crosstalk precompensation in downstream

transmission. While existing methods for multi-tone NLP

user encoding ordering (UEO) are rather heuristic in how

they approach fairness and suffer from substantial subop-

timality, we develop a novel algorithm for joint dynamic

spectrum management (DSM) and UEO that enforces a gen-

eralized alpha-fairness policy. Since finding the optimal UEO

is a combinatorial optimization problem with excessive com-

putational complexity, the proposed algorithm uses a low-

complexity iterative method which provides near-optimal

approximate solutions. Simulations demonstrate that the

novel algorithm achieves a trade-off between fairness and

performance that outperforms current UEO methods.

Index Terms— DSM, NLP, User encoding ordering

1. INTRODUCTION

The latest generation digital subscriber lines (DSL) access

technology approved by the International Telecommunication

Union (ITU) is called G.fast [1]. G.fast offers “fiber-like”

(over 1 Gb/s) transmission speeds for very short copper tele-

phony lines (below 100 m), by using a broad spectrum up to

212 MHz. Notwithstanding its tremendous improvement, the

broad spectrum also makes crosstalk cancellation very chal-

lenging in G.fast, especially at high frequencies where strong

levels of inter-user crosstalk interference are encountered.

Foremost among the challenges is that the traditional

linear zero forcing (ZF) precoder [2] for crosstalk precom-

pensation in downstream transmission suffers from a re-

duced signal-to-noise ratio (SNR) due to large transmit power

penalties. No longer near-optimal for G.fast, the linear ZF
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precoder starts to get outperformed by the linear minimum

mean squared error (MMSE) precoder which tolerates some

residual crosstalk at the benefit of an improved SNR [3].

An alternative for improving the SNR is nonlinear precod-

ing (NLP) which can be combined with either the ZF or the

MMSE criterion. NLP sequentially encodes the user trans-

mit signals in order to “pre-subtract” the crosstalk from pre-

viously encoded users without transmit power penalties. The

NLP performance is greatly affected by the per-tone user en-

coding ordering (UEO), since users encoded first typically

achieve higher rate gains than users encoded last. In this

paper, we pragmatically focus on ZF-NLP which allows for

easier expressions compared to theoretically optimal MMSE-

NLP, against only a very small performance loss [3].

However, the algorithms available for multi-tone NLP

UEO are rather heuristic in how they approach fairness and

suffer from substantial suboptimality. The most well-known

solution is the V-BLAST method [4] which maximizes the

minimum SNR at each tone separately. Recently, a new

efficient method called dynamic ordering (DO) has been pro-

posed in [5], which is shown in simulations to provide a

higher minimum total data rate than V-BLAST in G.fast.

In this paper, we develop a novel algorithm for joint dy-

namic spectrum management (DSM) and UEO for ZF-NLP

in G.fast. Overcoming the heuristic fairness approach, the al-

gorithm enforces the generalized alpha (α)-fairness policy (as

widely used in wireless scenarios [6]) and will be referred to

as α-fair per-tone exhaustive search (α-fair PTES). Unfortu-

nately, finding the optimal UEO entails a combinatorial prob-

lem with an exponential complexity in the number of tones

and users, which makes the considered optimization prob-

lem numerically infeasible. Therefore, α-fair PTES resorts

to a low-complexity iterative method which provides near-

optimal approximate solutions. Simulations demonstrate that

the novel algorithm achieves a trade-off between fairness and

performance that outperforms current UEO methods.

2. PROBLEM STATEMENT

2.1. System Model

We consider NLP based downstream transmission in a G.fast

DSL cable binder consisting of N interfering users and K
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Fig. 1: NLP model for downstream transmission on tone k.

tones or frequency sub-carriers (see Fig. 1 for a block dia-

gram). Assuming the standard synchronous discrete-multi-

tone (DMT) modulation, the linear part of transmission can

be modeled independently on each tone k = [1, · · · ,K] as

yk = HkPk

√

Skxk + zk. (1)

xk , [x1
k, · · · , xN

k ] is the N -vector containing the dirty paper

coded user data signals uk , [u1
k, · · · , uN

k ] on tone k with

identity covariance matrix. yk is the N -vector of received

signals on tone k. zk is the N -vector of uncorrelated additive

noise samples on tone k such that E{zkzHk } = σkIN . Pk de-

notes the N ×N precoder matrix on tone k, which represents

the linear processing applied to the user data signals.
√
Sk ,

diag{
√
sk} is a diagonal gain scaling matrix on tone k, with

sk , [s1k, · · · , sNk ] being the power allocation vector. Finally,

Hk , [hn,m

k ] denotes the N × N channel matrix on tone

k. The diagonal elements of Hk contain the direct channels

whilst the off-diagonal elements contain the crosstalk chan-

nels. Although the direct channels of Hk typically are dom-

inant below 30 MHz (i.e. |hn,n

k | ≫ |h
m,n

k |,m 6= n), recent

measurements show that this is not valid anymore for higher

frequencies of G.fast where the direct channels may even be

smaller than the crosstalk channels [7]. This in particular

makes it important to consider improved vectoring schemes

based on NLP and UEO for G.fast.

NLP is based on the theoretical concept of dirty pa-

per coding (DPC) which is a sequential interference pre-

subtraction technique that achieves capacity in the down-

stream channel [8]. To implement DPC a UEO is required:

the first encoded user experiences crosstalk from all other

users, the last encoded user has all other users’ crosstalk pre-

subtracted. DPC serves as an upper bound for practical NLP

implementations like the well-known Tomlinson-Harashima

precoding (THP) [9]. Importantly, there is a small perfor-

mance gap between the DPC concept and the THP imple-

mentation due to the necessary modulo operations resulting

in some power penalties [10]. Furthermore, we assume per-

fect channel state information and ideal signal processing,

although NLP schemes are recently shown to be sensitive to

channel estimations errors and other non-idealities [11].

NLP can be extended with the ZF criterion in order to can-

cel the remaining crosstalk, by using the QR decomposition

(QRD) of the conjugate transposed channel matrix [9]. To

include UEO, the QRD expression is extended with a linear

permutation matrix Ek obtaining

(EkHk)
H qr

= QkRk, (2)

where Qk is a unitary matrix and Rk is an upper triangular

matrix. Now, Hk = ET
kR

H
k QH

k . Furthermore, Ek is com-

puted according to the UEO vector πk , [π1
k, · · · , πN

k ] as

[Ek]n,m =

{

1 if m = πn
k

0 else,

where πi
k denotes the i-th encoded user and ET

kEk = IN
for each tone k. Then in combination with DPC, the ZF cri-

terion is achieved by setting the precoder matrix to Pk =
Qkdiag(R

H
k )−1Ek, and the estimated signal vector after de-

coding is

ŷk =
√

Skuk + zk. (3)

For this ZF-NLP system, the number of achievable bits

that can be loaded on tone k for user n is modeled by

bnk = log2
(

1 + snk (Γσk)
−1
)

, (4)

where Γ denotes the capacity gap which takes practical QAM

implementations into account, and is a function of the desired

BER, coding gain, and noise margin [12]. The total data rate

of user n in bits per second is Rn = fs
∑

k b
n
k where fs is the

DMT symbol rate.

2.2. Problem Statement

Instead of the traditional weighted-sum-rate (WSR), we con-

sider an objective function f({Rn}) based on the α-fairness

utility function of the data rates [6]. The joint α-fair DSM or

power allocation and UEO problem is then described by

maximize
{πk},{sk}

f({Rn}) =







∑

n wn

(Rn)
1−α

1− α
α 6= 1, α ≥ 0

∑

n wn log(Rn) α = 1.

s.t.
∑

k

∑

m

∣

∣

∣
[Pk]n,m

∣

∣

∣

2

smk ≤ P line ∀n

∑

m

∣

∣

∣
[Pk]n,m

∣

∣

∣

2

smk ≤ Pmask
k ∀n, k

0 ≤ snk ≤ scapk = Γσk

(

2b
cap − 1

)

, ∀n, k. (5)

In the objective function, wn is the weight of user n, and

α ∈ [0,∞] controls the trade-off between performance (user

mean-rate) on the one hand, and fairness (user min-rate) on

the other hand. In particular, α =∞ corresponds to the max-

min fairness (that can be considered to be the most fair al-

location), α = 1 corresponds to the proportional fair policy,

and α = 0 corresponds to WSR maximization (that is most

performant).

The first two constraints are realistic per-line transmit

power constraints. P line denotes the aggregate transmit

power (ATP) for every line, while {Pmask
k } are the per-

tone spectral masks which are kept low in G.fast in order to

not generate too much interference into other technologies.

The third constraint corresponds to the bit cap bcap for the bit

loading, translated into a power cap scapk by re-writing (4).
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3. α-FAIR PTES

Problem (5) is nonconvex since finding the optimal per-tone

UEOs {πk} entails a combinatorial problem whose complex-

ity increases exponentially with the number of tones K and

the number of users N . For any fixed set of {πk} though, the

remaining optimal power allocation problem is convex and

can be efficiently solved. The combinatorial problem thus can

be considered as the maximization over various concave func-

tions (one for each set of {πk}) leading to a non-smooth ob-

jective function. Unfortunately, for any practical G.fast sce-

nario, the naive attack on problem (5) with exhaustive search

over the (N !)K possible UEOs to find the globally optimal

solution is intractable. This motivates us to develop an ef-

ficient algorithm that computes a near-optimal approximate

solution of (5).

To first decouple the per-line ATP constraints between

the tones, we dual decompose problem (5) by applying La-

grangian relaxation. This consists in incorporating the ATP

constraints into the objective function, which results into the

following constrained Lagrange dual function

maximize
{πk},{sk∈Dk}

f({Rn})

−
∑

n

θn

(

∑

k

∑

m

|[Pk]n,m|2 smk − P line

)

s.t.
∑

m

∣

∣

∣
[Pk]n,m

∣

∣

∣

2

smk ≤ Pmask
k ∀n, k, (6)

where Dk , {snk |0 ≤ snk ≤ scapk , ∀n} and {θ1, · · · , θN}
are the non-negative dual Lagrange variables. The idea is to

solve the dual function (6) for each set of {θn}. Then, the

solution to the original problem (5) may be found by choos-

ing {θn} (with e.g. standard subgradient updating) such that

the ATP constraint for each line n is either tight or inactive,

i.e., θn
(

∑

k

∑

m |[Pk]n,m|2 smk − P line
)

= 0. For this dual

decomposition step, we may claim optimality by referring to

the “zero duality gap”-result for multi-carrier systems when

the number of tones is sufficiently large [13, 14].

Next, we propose an iterative method to approximately

solve (6) based on coordinate ascent of the objective func-

tion. The iterative method is organized in a per-tone fashion,

where for each tone k the optimal {snk , ∀n} and {πn
k , ∀n}

are calculated, while keeping {sk′}, {πk′} of all other tones

k′ 6= k fixed. In order to decouple the objective function

f({Rn}) between the tones as well, the method also lin-

earizes f({Rn}) in {Rn} each iteration. The linearized

objective function is expressed as

f lin({Rn}) , f({R̄n}) +
∑

n

wn

∂f

∂Rn

∣

∣

∣

∣

R̄n

(

Rn − R̄n

)

=
∑

n

wn
(

R̄n

)αRn + c, (7)

where {R̄n} correspond to the set of data rates obtained after

the previous iteration of tone k − 1, and c makes the approx-

imation tight. The linearized objective is an upper bound for

f({Rn}) when the UEO is fixed. Moreover, it may be in-

terpreted as a WSR function where the weights wn/(R̄n)
α

balance the user rates. Then, the independent subproblem for

each tone k is (when omitting the constants c and P line
∑

θn)

maximize
πk,sk∈Dk

∑

n

{

wnfsb
n
k

(

R̄n

)α − θn
∑

m

|[Pk]n,m|2 smk

}

s.t.
∑

m

∣

∣

∣
[Pk]n,m

∣

∣

∣

2

smk ≤ Pmask
k , ∀n. (8)

As optimizing over πk burdens subproblem (8) with a non-

smooth objective function, (8) remains nonconvex. Hence,

solving (8) optimally still requires an exhaustive search over

all πk, where for each πk the optimal power allocation has to

be calculated. This procedure is mathematically described in

(9) and (10).
maximize

πk

hk(πk) (9)

with

hk(πk)=maximize
sk∈Dk

∑

n

{

wnfsb
n
k

(

R̄n

)α − θn
∑

m

|[Pk]n,m|2 smk

}

s.t.
∑

m

∣

∣

∣
[Pk]n,m

∣

∣

∣

2

smk ≤ Pmask
k , ∀n (10)

This iterative process of sequentially linearizing f({Rn})
with (7) and solving (8) optimally with (9) and (10) for each

tone k is guaranteed to converge, because each per-tone it-

eration strictly increases the objective function which is at

the same time upper bounded. The convergence point can

be shown to be a locally optimal stationary point of (6).

For α = 0, it is in fact the global optimum since the α-fair

objective function simplifies to the WSR function [15].

For given πk, the per-tone optimal power allocation prob-

lem (10) can be solved in a straightforward manner. First,

note that now the objective function is concave [6] and the

constraints form a convex set in sk. As a result the KKT con-

ditions are sufficient for optimality. Examining these leads to

following water-filling type power update formula

snk =





wnfs/ log(2)
(

∑

m(θm + λm
k ) |[Pk]m,n|2

)(

R̄n

)α − Γσk





s
cap

k

0

,

(11)

where [x]ba , max(a,min(x, b)). Furthermore, λk ,

[λ1
k, · · · , λN

k ] are non-negative per-tone Lagrange multipliers,

which should be chosen such that for each user n and tone

k the spectral mask constraint is either tight or inactive, i.e.,

such that the KKT complementary condition is satisfied

λn
k

(

∑

m

|[Pk]n,m|2 smk − Pmask
k

)

= 0, ∀n. (12)
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Algorithm 1: α-fair PTES

Initialize ∀k: πk = [1, · · · , N ], sk = 0N

repeat

Set/update θn, ∀n
repeat

for k = [1 · · ·K] do

Calculate R̄n, ∀n
foreach [π1

k, · · · , πN
k ] do

Pk = Qkdiag(R
H
k )−1Ek using (2)

sk ← Solve problem (10)

if f({Rn}) is increased then
store {sk,πk,Pk}

end

end

end

until convergence

until θn
(

∑

k

∑

m |[Pk]n,m|2 smk − P line
)

< ǫ ∀n

The optimal λk may be computed with either the ellipsoid

method or with the standard sub-gradient approach [13].

A complete algorithmic description is given in Alg. 1,

which is referred to as α-fair PTES, since the K per-tone

subproblems (8) are solved using an exhaustive search over

N ! possible orderings. Thus the complexity for computing

the UEO is linear in K and exponential in N . For more than

five users, this algorithm continues to be prohibitively com-

plex. However, we add here that also larger scenarios can be

handled by adopting specific suboptimal methods with only

polynomial complexity in N to replace the exhaustive search

in (8). This will be the topic of a forthcoming report, further

details are omitted here for brevity. As a preview, we include

in the performance evaluation in section 4 two such α-fair

UEO methods, called successive ordering search (SOS) and

derivative based ordering (DBO), that reduce the complexity

of α-fair PTES against only little performance loss.

4. PERFORMANCE EVALUATION

In this section the performance of α-fair PTES is evaluated

for the G.fast 212 MHz profile. We assume G.9700 spectral

masks [1], 8 dBm per-line ATP constraints, a 14 bitcap and a

background noise of -140 dBm/Hz. The tone spacing is 51.75

kHz and the symbol rate is 48 KHz. The capacity gap Γ is

set to 9.45 dB. The channel matrices have been obtained by

measurements of a cable binder consisting out of N = 5 lines

of 80 m. We consider equal user weights (i.e. {wn = 1|∀n}).
The comparison between the different UEO methods is

given in Fig. 2, showing the obtained mean-rates (perfor-

mance) and min-rates (fairness) versus the fairness parameter

α. Included in the comparison are the heuristic V-BLAST

[4] and DO [5] UEO methods. Given the obtained {πk}, the

optimal power allocations are then calculated such that the
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Fig. 2: N = 5 scenario where the proposed α-fair UEO meth-

ods achieve a trade-off between performance (mean-rate) and

fairness (min-rate) that outperforms current UEO methods.

WSRs are maximized. The best of four randomly generated

{πk} is also included for comparison (labeled as ‘Random’).

Interestingly, the proposed α-fair UEO methods achieve

a trade-off between performance and fairness which outper-

forms current UEO methods. For instance, for large α (max-

min fairness), the user min-rate obtained by α-fair PTES is

more than 5% higher than for DO. In addition, for the same

user min-rate, α-fair PTES achieves a small higher (≈ 0.6%)

user mean-rate than DO. We remark also that DO achieves

a higher min- and mean-rate than V-BLAST, confirming the

results in [5].

Clearly, the economies of scale are also active, mean-

ing that first for a small performance loss a lot of fairness

is gained, after which increasingly more performance is sac-

rificed for only little extra fairness. This steep initial fairness

gain mainly stems from the UEOs being assigned in favor of

the weakest users. Only for large α’s, the power allocation

also starts to really kick in as strong users back off their trans-

mit power in favor of weak users.

5. CONCLUSION

An optimization framework for joint α-fairness based DSM

and UEO for ZF-NLP in G.fast downstream transmission is

presented in this paper. Since computing the optimal UEO

scales exponentially with the number of tones K and users

N , computing a globally optimal solution for any G.fast sce-

nario is intractable. Motivated by this, α-fair PTES has been

proposed, which solves the optimization problem in a near-

optimal per-tone iterative fashion, leading to a linear com-

plexity in K. The complexity of this algorithm can be further

reduced with efficient suboptimal methods, which will be the

topic of a forthcoming report. Simulations reveal that the α-

fair PTES achieves a trade-off between performance and fair-

ness that outperforms current UEO methods like DO.
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