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ABSTRACT

This paper considers a multicell downlink channel in which multi-

ple base stations (BSs) cooperatively serve users by jointly precod-

ing shared data transported from a central processor over limited-

capacity backhaul links. We jointly design the beamformers and

BS-user link selection so as to maximize the sum rate subject to

user-specific signal-to-interference-noise (SINR) requirements, per-

BS backhaul capacity and per-BS power constraints. As existing so-

lutions for the considered problem are suboptimal and their optimal-

ity remains unknown due to the lack of globally optimal solutions,

we characterized this gap by proposing an globally optimal algo-

rithm for the problem of interest. Specifically, the proposed method

is customized from a generic framework of a branch and bound al-

gorithm applied to discrete monotonic optimization. We show that

the proposed algorithm converges after a finite number of iterations,

and can serve as a benchmark for existing suboptimal solutions and

those that will be developed for similar contexts in the future. In

this regard, we numerically compare the proposed optimal solution

to a current state-of-the-art, which show that this suboptimal method

only attains 70% to 90% of the optimal performance.

Index Terms— Multicell cooperation, limited backhaul, sum

rate maximization, discrete monotonic optimization.

1. INTRODUCTION

Due to the explosive growth of wireless devices and data services, in-

creasing network capacity has become a critical target for the current

and future wireless networks. As well concluded from pioneer re-

search, intercell-inteference is a key factor limiting the overall spec-

tral efficiency offered by wireless technologies [1]. Schemes turning

interference from nuisance to the users’ benefit, such as cooperative

multipoint (CoMP) processing has been proposed [2]. The central

idea is to allow for joint processing by multiple transmitters, thereby

turning the interference to useful signals [1–3]. The two main forms

of CoMP processing are interference coordination and data sharing.

In the latter, data for a specific is transmitted from multiple base sta-

tions (BSs), which is the focus of this paper.

The promise of multicell BS cooperation is often seen under the

assumption that the backhaul network is able to deliver an enormous
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signaling overhead from a central processor (CP) to all BSs. In prac-

tice, the capacity of the backhaul communications is limited, espe-

cially, with wireless backhauling [4]. Therefore, a number of recent

research efforts have investigated solutions to optimize various per-

formance measures in finite-capacity backhaul networks for differ-

ent system models. Those include, e.g., sum rate maximization [5],

joint backhaul and power minimization [6], energy efficiency max-

imization [7], and backhaul usage minimization [8]. To deal with

the backhaul constraint in particular, the aforementioned works have

adopted a BS-user link selection scheme where each BS in the net-

work transmits data to only a proper subset of users in order to reduce

the backhaul consumed.

This paper is to explore the optimal performance of maximizing

the sum rate of cooperative multicell downlink under limited back-

haul capacity constraints. In particular, we propose a beamforming

design to maximize the achievable sum rate while satisfying per-

BS backhaul capacity, per-BS power constraints, and user-specific

signal-to-interference-noise (SINR) requirements. The latter condi-

tion ensures the minimum quality of service for each user regardless

of the user’s location in a cell. To cope with the backhaul limitation,

a BS-user link selection scheme is necessary and will be studied in

this paper. Thus, the resulting problem is in fact a joint beamforming

and BS-user link selection design which naturally leads to a mixed-

Boolean non-convex program (MBNP), which is generally known

to be NP-hard and optimal solutions are hard to derive. A subopti-

mal solution based on reweighted l1-norm was proposed for a similar

problem in the considered context [5]. Although this approach yields

solutions with reasonably low complexity, its achieved performance

in relation to the optimal one has not been investigated yet. To fill

this gap, we propose an algorithm that achieves a global optimum

of the design problem. The proposed method is based on a discrete

monotonic optimization (DMO) framework which is difficult to con-

nect to the original problem formulation. In particular, the hidden

monotonicity of the considered problem is exposed by a novel pro-

posed transformation. This then facilitates an efficient customiza-

tion of a discrete brach-reduce-and-bound (DBRB) method to find a

global optimum. Numerical results are provided to demonstrate the

convergence of the proposed optimal algorithm and the performance

gains over known methods.

2. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multiple-input single-output (MISO) downlink transmis-

sion of wireless systems where there are B multiple-antenna BSs,

each is equipped with M antennas, jointly serving K single-antenna

users. Suppose that all BSs in the network are connected to a CP

through backhaul links of limited capacity. We also assume that the

CP has the data of all users and perfectly knows the associated chan-
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nel state information (CSI) and the necessary control information.

The data symbol for user k is denoted by dk, assumed to have unit

energy, i.e., E[|dk|
2] = 1. Herein, we adopt linear precoding, i.e.,

dk is multiplied with beamformer wb,k ∈ C
M×1 before being trans-

mitted by BS b. Accordingly, under flat fading channels, the received

signal yk ∈ C
M×1 of user k can be written as

yk =
∑B

b=1hb,kwb,kdk +
∑B

b=1

∑K

j 6=k
hb,kwb,jdj + σk, (1)

where hb,k ∈ C
1×M is the (row) vector representing the channel of

(b, k), and σk ∼ CN (0, N0) is the additive white Gaussian noise at

user k. For notational simplicity, let hk , [h1,k,h2,k, . . . ,hB,k] ∈
C

1×MB and wk , [wT
1,k,w

T
2,k, . . . ,w

T
B,k]

T ∈ C
MB×1 be the ag-

gregate vectors of all channels and beamformers from all BSs to user

k, respectively. We also denote by w the beamforming vector en-

compassing all wk. We further assume that single-user decoding

is performed. In this regard, the intercell-interference is treated as

Gaussian noise, and thus the SINR at user k can be written as

γk(w) , |hkwk|
2(
∑K

j=1,j 6=k
|hkwj |

2 +WN0)
−1. (2)

The data rate of user k is given by Rk(w) , W log(1 + γk(w)),
where W is the bandwidth. To simplify the notation, we will drop

W in the sequel.

Let us denote by xb,k ∈ {0, 1} the selection preference vari-

able where xb,k = 1 indicates that transmission link between BS

b and user k is active and xb,k = 0 otherwise. The backhaul us-

age of BS b is the sum of data streams of its served users given by

CBH
b ,

∑K

k=1xb,kRk(w) which is upper bounded by a link capacity

C̄, i.e., CBH
b ≤ C̄. To reduce the backhaul usage, BS b can turn off

transmissions to some users. That is, the CP does not deliver those

users’ information to BS b. Also, beamformers associated to inactive

transmissions are forced to be zero, i.e., wb,k = 0 if xb,k = 0. To

capture this relation, we introduce the constraint ‖wb,k‖ ≤ xb,kub,k

where ub,k represents a soft power level of wb,k and will be opti-

mized under the considered power constraint.

Based on the above discussions, the problem of joint beamform-

ing design and BS-user link selection which maximizes the sum rate

subject to user-specific SINR requirements, per-BS backhaul capac-

ity and power constraints can be formulated as

maximize
w,x,u

∑K

k=1Rk(w) (3a)

subject to
∑K

k=1xb,kRk(w) ≤ C̄, ∀b, k (3b)

γk(w) ≥ γ̄0,∀k (3c)

‖wb,k‖
2
2 ≤ xb,kub,k, ∀b, k (3d)

∑K

k=1ub,k ≤ P̄ , ∀b, k (3e)
∑B

b=1xb,k ≥ 1, ∀b, k (3f)

xb,k ∈ {0, 1}, ∀b, k, (3g)

where γ̄0 is the per-user targeted SINR, and P̄ is the per-BS transmit

power budget. We also denoted x , [x1,k, . . . xb,k, . . . , xB,K ]T ∈
{0, 1}BK and u , [u1,k, . . . ub,k, . . . , uB,K ]T ∈ R

BK
+ . Herein

(3f) is added to ensure each user is always served by at least one BS.

Note that user-specific SINR constraint (3c) can be represented as an

SOC constraint following the results in [9] as

hkwk ≥
√

γ̄0(
∑K

j 6=k
|hkwj |2 +WN0) , ℑ(hkwk) = 0. (4)

It is now clear that problem (3) belongs to the class of MBNP due

to the Boolean variable x, the nonconvex objective (3a) and the non-

convex constraint (3b). Recall that a suboptimal solution for this

problem was proposed in [5] using a sparsity inducing norm ap-

proach. Thus, there is a need to understand its achieved performance,

and to see if there is a room for improvement.

3. PROPOSED OPTIMAL SOLUTION

We derive an algorithm which globally solves (3) by customizing a

state-of-the-art global discrete optimization technique namely dis-

crete monotonic optimization. This framework has been applied

to find a global optimum of different MBNP problems in wireless

communications [10–12]. It is worth noting that although continu-

ous monotonic optimization (MO) [13] can also handle discrete con-

straints in (3g) by writing xbk ∈ {0, 1} ⇔ x2
b,k − xbk ≥ 0, xb,k ∈

[0, 1]. However it potentially returns only approximate solutions by

a finite number of iterations. Thus, DMO has been developed in [14]

to compute exact optimal solutions. In this section, we will adapt

the discrete branch-reduce-and-bound strategy in DMO, to solve the

design problem (3). Before proceeding further, we remark that ba-

sic concepts of the MO such as increasing function, normal cone and

box are used throughout the rest of this section. Their definitions can

be found in [13] and are omitted in this paper due to space limitation.

The current formulation of the design problem is not amendable

for a direct application of the DBRB since (3) does not hold the

monotonicity property w.r.t. the involved variables. Thus, a further

proper translation is required. For this purpose, let us introduce new

slack variable zk and rewrite (3) as

maximize
w,x,u,z

∑K

k=1zk (5a)

subject to hkwk ≥
√

(ezk − 1)(
∑K

j 6=k
|hkwj |2 +WN0) (5b)

∑K

k=1xb,kzk ≤ C̄ (5c)

(3d), (3e), (3f), (3g), (4), (5d)

where z , [z1, . . . , zK ]T . The equivalence between (3) and (5)

can be verified as (5b) holds with equality at the optimum. Now we

can observe that a better objective of (5) is always achieved if we

keep increasing each of zk as long as it is still in the feasible set

of (5). In addition, the feasibility of z is established depending on

x as can be seen in (5c). Furthermore, constraint (5c) is monotone

w.r.t. z and x. These three observations imply that (5) is suitable

for a direct application of the DBRB to find the optimal solutions

of z and x. Before describing the details, we introduce new nota-

tions for the ease of exposition. Let s = [xT , zT ]T ∈ R
Nx+Nz

+ be

the variable vector of interest where Nx = BK and Nz = K
are dimensions of the Boolean and continuous vectors x and

z, respectively. Let S be the feasible set of problem (5), i.e.,

S = {s ∈ R
N
+ | (3d), (3e), (3f), (3g), (4), (5b), (5c)} where N =

Nx +Nz and S is normal and finite since it is upper bounded by the

power and backhaul constraints. Additionally, the feasible set S is

contained in a box D = [a,b] ∈ R
N
+ whose vertices are determined

as follows. It is easily seen that ai = 0 and bi = 1 for i = 1, . . . Nx

since xb,k ∈ {xb,k, xb,k} = {0, 1}. On the other hand, variable

zk is bounded below by zk ≥ zk = log(1 + γ̄0). In addition, we

can verify zk ≤ zk = min{BC̄, log(1 + |hkwk|
2/WN0)} ≤

min{BC̄, log(1 + ‖hk‖
2
2‖wk‖

2
2/WN0)} ≤ min{BC̄, log(1 +

BP̄‖hk‖
2
2/WN0)}. That is to say, for i = Nx+1, . . . , N , we have

ai = log(1+ γ̄0) and bi = min{BC̄, log(1+BP̄‖hk‖
2
2/WN0)}

where k = i−Nx. To sum up, the lower and upper vertices of box

D are given by

a = [0Nx
, log(1 + γ̄0)× 1Nz

]

b = [1Nx
,
{

min{BC̄, log(1 +BP̄‖hk‖
2
2/WN0)}

}Nz

k=1
],
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where 0Nx
, 1Nx

and 1Nz
denote vectors of all zero and one values

of the size given in the subscripts, respectively. At this line, problem

(5) can be compactly rewritten as

max{f(s) ,
∑N

i=Nx+1si | s ∈ S ⊂ D}. (6)

We are now ready to describe the DBRB algorithm to solve (6) op-

timally. Generally, this method is an iterative procedure consisting

of three basic operations at each iteration: branching, reduction, and

bounding. More specifically, starting from the box [a,b], we iter-

atively divide it into smaller and smaller ones, remove boxes that

do not contain an optimal solution, search over remaining boxes for

a better optimal solution until fulfilling the stopping criterion. Dif-

ferent to the continuous procedure, to guarantee the exact solution of

the Boolean variable, Nx first elements on the cutting plane of boxes

are adjusted to be dropped in the Boolean set during the branching

and reduction operations. The adjustment rule is motivated by the

monotonicity property to ensure not cutting off any feasible solu-

tion [14]. The algorithm terminates when the size of boxes contain-

ing the optimal solution is small enough. DBRB algorithm is de-

scribed in Alg. 1 where details are given as follows. For notational

convenience, we denote by ϑn, Rn, fU (V ) and fL(V ) the current

best objective (cbo), the set of boxes containing an optimal solution

at iteration n, the upper bound and lower bound value of f(s) over

box V , respectively.

Branching

We start iteration n by selecting a box in Rn and splitting it into two

smaller ones. A candidate box Vc ∈ Rn for branching is picked up

by the improving bound rule [13], i.e., Vc = argmaxV ∈Rn
fU (V ).

The selected box Vc = [p,q] is then bisected along the longest edge,

i.e., j = argmax1≤i≤N (qi − pi), to create two new boxes which

are of equal size as

V (1)
c =

{

[p, q− ej ] if j ≤ Nx,

[p, q− ej(qi − pi)/2] if j > Nx,

V (2)
c =

{

[p+ ej , q] if j ≤ Nx,

[p+ ej(qi − pi)/2, q] if j > Nx.

(7)

Rule (7) ensures that the elements on the cutting plane correspond-

ing to the Boolean variable are adjusted to be in the Boolean set.

For a resulting box V
(l)

c , l = {1, 2}, it possibly contains segments

which are either infeasible solutions to (6) or solutions resulting in

a smaller objective than ϑn. Thanks to the monotonicity property,

we can remove those portions of no interest by a cutting procedure

referred as reduction operation.

Reduction

Suppose that the input of this operation is box Ṽ = [p,q] and Ṽ
is assumed to contain an optimal solution. We aim at reducing the

size of the solution set without loss of optimality by searching for a

smaller box V ′ = [p′,q′], i.e., [p′,q′] ⊂ [p,q] such that an optimal

solution must be contained in V ′. That is, if all vectors belonging

to portion [p,p′) result in a smaller objective value (f(s) < ϑn)

and/or be outside the feasible set of (6) (s ∈ D\S), the portion

[p,p′) must be cut off. On the other hand, we remove the portion

(q′,q] if any vector in the set is infeasible to (6). Mathematically,

for each i = 1, . . . , N , we can replace p by p′ ≥ p where p′ =
q−

∑N

i=1αi(qi − pi) and

αi = sup{α |0 ≤ α ≤ 1, q− α(pi − qi)ei ∈ D\S

f(q− α(pi − qi)ei) ≥ ϑn}.
(8)

Algorithm 1 The proposed DBRB algorithm

1: Initialization: Compute a, b and apply box reduction to box

[a,b]. Let n := 1, R1 = red([a,b]) and ϑ1 = K log(1 + γ̄0)
2: repeat {n := n+ 1.}

3: Branching: select a box Vc = [p,q] and branch Vc into two

smaller ones V
(1)

c and V
(2)

c

4: Reduction: apply box reduction to each box V
(l)

c (l =

{1, 2}) and obtain reduced box red(V
(l)

c )

5: Bounding: For each box red(V
(l)

c ), if (11) is feasible.

-Use Alg. 2 to find a feasible solution, obtain fL(red(V
(l)

c ))

and update ϑn = max{fL(red(V
(l)

c )), ϑn−1}

-Update fU (red(V
(l)

c )) and Rn = Rn−1 ∪

{red(V
(l)

c )|fU (red(V
(l)

c )) ≥ ϑn}
6: until Convergence

Similarly, vertex set q is replaced by q′ ≤ q where q′ = p′ +
∑N

i=1βi(qi − p′i)ei and

βi = sup{β |0 ≤ β ≤ 1, p′ + β(qi − p′i)ei ∈ S} (9)

The values of αi and βi in (8) and (9) can be found easily by the

bisection method. For i = 1, . . . , Nx, the output of the reduction

task should be nested in the Boolean set, i.e., p′i, q
′
i ∈ {0, 1} since

they correspond to the Boolean variable. Thus, by replacing qi −
pi = 1 into (8) for i = 1, . . . , Nx, we can quickly achieve that p′i =
{

1 if q− ei ∈ D\S

0 otherwise,
. If it results in p′i = 0, we then replace

qi − p′i = 1 into (9) and achieve q′i =

{

1 if p′ + ei ∈ S

0 otherwise
. As

have been proved in [14] that the reduction procedure above does

not drop off any feasible solution of (6). We refer the output of the

reduction operation with the input box Ṽ = [p,q] as red([p,q]).

Bounding

The bounding operation aims at updating the upper and lower

bounds of the resulting boxes from the reduction operator, thereby

removing boxes of no interest whose upper bound is smaller than

the cbo. The upper and lower bounds of box red([p,q]) = [p′,q′]
can be simply computed as f(q′) and f(p′), respectively, due to

the monotonic increase of the objective. However, this often re-

sults in slow convergence rate. Instead, we now consider a better

bound computation for box [p′,q′] as follows. Recall that prob-

lem (5) is NP hard due to the Boolean variable x and nonconvex

constraints (5b), (5c). Nevertheless, we can compute the upper

bound of f(s) by a convex relaxation of (5). That is, we replace

the left side of (5c) by its convex envelope, i.e.,
∑K

k=1xb,kzk ≥

φb(xb,k, zk) where φb(xb,k, zk) , max{
∑K

k=1(zkxb,k +xb,kzk −

xb,kzk);
∑K

k=1(zbxb,k + xb,kzk − xb,kzk)} for zk ∈ [zk, zk] and

xb,k ∈ [xb,k, xb,k] [15]. Note that (xb,k, zk) and (xb,k, zk) corre-

spond to elements in p′ and q′, respectively. In addition, the right

side of (5b) can be replaced by its lower bound as

hkwk ≥
√

(ezk − 1)(
∑K

j 6=k
|hkwj |2 +WN0). (10)

Then, by treating x as a continuous variable vector, the upper bound

of f(s) is computed by solving the following SOCP problem

max
w,x,u,z

∑K

k=1zk (11a)

subject to (3e), (3f), (4), (10), (5c) (11b)
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‖wT
b,k (xb,k − ub,k)/2‖2 ≤ (xb,k + ub,k)/2, (11c)

ϑn ≤
∑K

k=1zk ≤
∑K

k=1zk, (11d)

φb(xb,k, zk) ≤ C̄, (11e)

where (11c) is the SOC representation of (3d) when xb,k ∈ [0, 1].

Let f(s∗) =
∑K

k=1 z
∗
k be the optimal objective where (.)∗ de-

notes the solution of (11). Although s∗ may not be feasible to (5)

as discrete constraint (3g) is neglected, we can still achieve that

f(s∗) ≤ f(q′) [15]. In addition, we can also compute a better

lower bound if a feasible solution to (5) in box [p′,q′] (denote as

ŝ) is determined, i.e., f(ŝ) ≥ f(p′). We can establish ŝ by some

insights gained from the optimal solution to (11). Particularly, we

can see that the smallest elements of soft power level u∗ imply the

less contribution of corresponding transmission links in satisfying

(10). To this point, a feasible selection vector x may be determined

by turning off those transmission links (i.e., force x∗
b,k = 0 if u∗

b,k

is small enough and set the remaining ones x∗
b,k =1). On the other

hand, given a pre-determined selection vector x̃ ∈ {0, 1}Nx , it is

said to be feasible if
∑B

b=1x̃b,k ≥ 1 and there exists w and u which

satisfying the following constraints

‖wT
b,k (x̃b,k − ub,k)/2‖2 ≤ (x̃b,k + ub,k)/2, (3e), (10), (12a)

∑K

k=1x̃b,kR(w) ≤ C̄. (12b)

With these observations, we can derive a binary-search-based ap-

proach to find an optimal solution in box [p′,q′]. The central idea

is to iteratively pick vector x̃ based on solution u∗ of (11), and ver-

ify its feasibility by solving the problem {findw,u s.t. (12a)} and (if

feasible) checking the obtained solution with (12b). The algorithm

outputs a solution that yields the best objective among all validated

feasible solutions in box [p′,q′]. We use this solution to update the

lower bound fL([p
′,q′]). Details of the searching method is de-

scribed in Alg. 2 and used at step 5 of the DBRB algorithm (Alg. 1).

The convergence property of Alg. 1 is followed by the one in [14]

and numerically shown in next section.

4. NUMERICAL RESULTS

We numerically evaluate the proposed DBRB method. We con-

sider a network consisting of B = 3 BSs equipped by M = 4
antennas and K = 6 single-antenna users randomly placed in the

coverage area of all BSs. The inter-site distance between two BSs

Algorithm 2 The binary search algorithm

1: Initialization: Let u∗ be the solution of (11) . Set Lmin = K
and Lmax = Nx. Set f opt =

∑K

k=1 zk
2: while Lmin < Lmax do

3: Set L = ⌊(Lmax + Lmin)/2⌋
4: Let λL be value of the L-th largest element of u∗.

5: Set x̃b,k = 1 if u∗
b,k ≥ λL and x̃b,k = 0 otherwise.

6: if Solving {findw,u s.t. (12a)} is feasible then

7: Obtain solution ŵ and calculate achieved Rk(ŵ)

8: if
∑K

k=1 x̃b,kRk(ŵ) ≤ C̄, ∀b, k then

9: Set f opt = max{f opt,
∑K

k=1 Rk(ŵ)}
10: end if

11: else

12: Set Lmax = L− 1 and return to step 3

13: end if

14: Set Lmin := L+ 1
15: end while
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Fig. 1. Convergence behavior of the DBRB and comparison to the

suboptimal one in [5] for two channel realizations with C̄ = 200
Mnats/s.
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Fig. 2. Average sum rate versus the backhaul capacity C̄ .

is d = 1 km. The pathloss model is given by PL(dB) = 128.1 +
37.6 log10(d) and the standard deviation of the log normal shadow-

ing is 8. The transmit power budget is P̄ = 46 dBm, the noise

power density is N0 = −174 dBm/Hz and the system bandwidth

is W = 10 MHz. We also set the per-user specified SINR γ̄0 = 0
dB. For comparison purposes, we use Alg. 1 as a benchmark to the

suboptimal method studied in [5] which measures the same backhaul

metric as this paper.

Fig. 1 shows examples of the convergence behavior of the DBRB

algorithm, i.e., the convergence is declared when the gap between

upper bound (UB) and lower bound (LB) is small enough. As can

be seen, this gap is reduced rapidly during first few iterations since a

large number of infeasible portions are cut off. Alg. 1 converges after

a finite number of iterations. Another interesting observation is that

the performance of the solution in [5] is quite far from the optimal

one. This can also be seen by Fig. 2 where we illustrate the aver-

age sum rate versus the backhaul capacity. Fig. 2 demonstrates that

the suboptimal method only attains 70% to 90% of the optimal per-

formance. Thus, there is a need of a more efficient low-complexity

scheme.

5. CONCLUSION

This paper has considered the problem of joint beamforming and

BS-user link selection to maximize the sum rate in a downlink CoMP

transmission with limited backhaul capacity links. We have derived

an optimization framework that solves the design problem to global

optimality by customizing a DBRB algorithm. We have also numer-

ically shown the finite convergence of the proposed method. The

proposed optimal solution serves as a benchmark and can generate

design guidelines for the suboptimal solutions. The DBRB frame-

work can be extended for similar problems involving different back-

haul usage measures.
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