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ABSTRACT

This paper considers a two-receiver multiple-input multiple-output
(MIMO) Gaussian broadcast channel model with integrated ser-
vices. Specifically, two sorts of service messages are combined
and served simultaneously: one multicast message intended for
both receivers and one confidential message intended for only one
receiver and kept perfectly secure from the other receiver. Our
goal is to jointly design the transmit covariances of the multicast
message and confidential message, such that the secrecy capacity
region is maximized. This maximization problem is a biobjective
optimization problem, but can be converted into a general scalar
optimization problem via our proposed method of scalarization.
Nonetheless, the equivalent scalar problem is nonconvex by na-
ture. To circumvent the nonconvex issue, a provably convergent
difference-of-concave (DC) approach is introduced to solve it in an
iterative fashion. In view of the high computational complexity of
the DC approach, a power splitting method is also devised for fast
implementation of service integration. The security performance
and computational efficiency of our proposed algorithms are finally
demonstrated by numerical results.

Index Terms— Physical-layer service integration (PHY-SI), DC
program, broadcast channel (BC), secrecy capacity region

I. INTRODUCTION

Recently, physical-layer service integration (PHY-SI), a tech-
nique of combining multicast message and confidential message
at PHY for one-time transmission, has received much attention
in wireless communications. In comparison with the conventional
upper-layer-based approach, PHY-SI enables coexisting services to
share the same resources by solely exploiting the physical charac-
teristics of wireless channels, thereby significantly increasing the
spectral efficiency (SE). This property makes PHY-SI a prominent
approach to satisfy the ever-increasing need for radio spectrum.

There has been much information theory literature on PHY-SI
hitherto. Csiszar and Korner’s seminar work [1] established the fun-
damental limitation of PHY-SI in a discrete memoryless broadcast
channel (DMBC). Other notable results include the extension to the
case with multiple-input multiple-output (MIMO) [2], [3], and to
the bidirectional relay networks [4]. These information-theoretic
results has thus triggered recent research endeavors on PHY-SI
from a signal processing point of view [5]-[8], which aimed to
design specific transmit schemes to attain the Pareto boundary of
the secrecy capacity regions. However, these works only focused
on the multi-input single-output (MISO) channels. To the best of
our knowledge, there is no existing papers directly tackling PHY-SI
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in MIMO channels from a signal processing point of view. We fill
this gap in this work .

Consider a two-user MIMO broadcast channel (BC) with two
sorts of messages: a common (multicast) message intended for
both receivers, and a confidential message intended for merely
one authorized receiver. The confidential message must be kept
perfectly secure from the unauthorized receiver. Our interest in
this paper lies in the input covariance design of the transmitted
messages, such that the secrecy capacity region is maximized.
The resulting optimization problem turns out to be a biobjective
maximization problem. To circumvent the difficulty in solving
such problem, a method of scalarization is proposed to convert
this problem into a provably equivalent scalar problem, identified
as a secrecy rate maximization (SRM) problem with quality of
multicast service (QoMS) constraints. This optimization problem is
non-convex, but can be transformed into a form of the difference-
of-concave (DC) functions. This problem structure motivates us to
utilize the classical DC algorithm [9] to solve this problem in an
iterative fashion. In each iteration, we approximate the non-convex
constraints and objective function via the Taylor series expansion.
In addition, a fast power splitting algorithm is put forward to
facilitate the efficient implementation of PHY-SI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink of a multiuser system in which a
multi-antenna transmitter serves two receivers, and each receiver is
equipped with multiple antennas. Assume that both receivers have
ordered the multicast service and receiver 1 (authorized receiver)
further ordered the confidential service.

The received signal at both receivers can be expressed as

y1 = Hix+z1, y2 = Hox + 22, (D

respectively, where Hy € CNo*Mt (resp. Ha € CVe*Mt) s the
channel matrix from the transmitter to receiver 1 (resp. receiver 2),
and N, Ny and N, are the number of transmit antennas employed
by the transmitter, receiver 1 and receiver 2, respectively. We
assume that N; > N, for which the reason will become clear in
the proof of Theorem 1. z; and z» are the additive white Gaussian
noise (AWGN) with zero mean and unit variance at receiver 1 and
receiver 2, respectively. x € C™* is the coded information, which
consists of two independent components, i.e.,

X = Xo+ Xey (2)

where X is the multicast message intended for both receivers, X is
the confidential message intended merely for receiver 1. We assume
xo ~ CN(0,Qo), xc ~ CN(0,Qc) [2], where Qo and Q. are
the transmit covariance matrices.

Denote Ry and R. as the achievable multicast rate and achiev-
able secrecy rate, respectively. Then the secrecy capacity region
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Cs(H1,H>, P) is given as the set of nonnegative rate pairs
(Ro, R.) satisfying' [2]

1
Ro < mianog I+ (I-l—HchHf) H,QoH/

i=1,

, ()

R. <log|I+H:Q.HY , (3b)

—log ’1 + H.Q.HY

and Tr(Qo + Q¢) < P with P being total transmit power budget
at the transmitter.

With perfect channel state information (CSI) available at the
transmitterz, to find capacity-achieving Qo and Q., we must first
solve the following secrecy capacity region maximization (SCRM)
problem, which is a biobjective maximization problem with cone

K=K"=R3:
rt.R%) (Ro, Re
Qo«,gifil)%(oﬂc (Wr +) ( 0 )
—1
s.t. I{lin2 log |I+ (I + HchHf) HiQOH{{ > Ry, (4a)
log )1 L H.Q.HY| —1og ‘I L H.Q.HY| > R., (@b
TI'(Q() + QC) S P7 (4C)
Qo =0,Q. = 0. (4d)
III. A TRACTABLE APPROACH TO THE SCRM

PROBLEM

A standard technique for dealing with biobjective optimization
problems is the convex combination of the optimized objectives.
However, since problem (4) is a nonconvex biobjective optimization
problem, this method might not yield all Pareto optimal points [10].
In view of the limitation of this technique, we next propose an
alternative method of scalarization to find all Pareto optimal points
of (4).

III-A. An Equivalent Scalarization of (4)

In particular, our strategy is to transform problem (4) into a
scalar optimization problem by fixing the variable R¢ as a constant
Tms > 0. As a result, the maximization of the vector (Ro, R.)
will be degraded into the maximization of a scalar R., which is
shown in (5). As it will be proved in Theorem 1, all Pareto optimal
solutions of (4) can be found by varying the parameter Tp,s.

R(Tms) = énax log |I + HchH{H

—log (I + H.Q.HY

0:Qc
1
s.t. rg{ng log |T + (I + HchHf{) H;QoH/ | > 7ms, (52)
Tr(Qo + Q) < P,Qo = 0,Q. = 0. (5b)

In (5), the variable R. is discarded since it can be regarded
as a slack variable. R(7,s) is the optimal objective value of (5),
and T,,s can be interpreted as predetermined requirement of the
achievable multicast rate. Specially, when we set 7,,s = 0, problem
(4) becomes a conventional SRM problem in MIMO wiretap
channel. On the contrary, the confidential message transmission
is terminated when 7,,s exceeds a threshold Tmax given by

in log [T + H;QoH| . 6
Qo <p 213108 [T HQH] (O

Tmax =
'In this paper, we only focus on the case where a positive secrecy rate
can always be achieved. Otherwise, it is trivial to investigate the secrecy
capacity region, since the region would be degraded into a line segment on
the axis of multicast rate.
2This assumption of perfect CSI is valid in the context of PHY-SI, since
all nodes are active in the network for ordering the multicast service so that
their channels can be monitored.

The value of Tmax can be numerically obtained by solving (6) via
the convex optimization solver CVX [11].

Currently, the crucial problem lies in whether problem (5)
enables us to acquire all Pareto optimal solutions of problem (4).
Remarkably, we prove that the answer is yes in the following
theorem.

Theorem 1: The rate pair (Tms, R(Tms)) is a Pareto optimal
point of (4), and all Pareto optimal points of (4) can be obtained by
solving (5) with different 7,,,5’s lying within the interval [0, Tmax].

Proof: The proof can be found in Appendix. |

Remark 1: Theorem 1 bridges the Pareto optimal points of
(4) to the boundary points of Cs(Hi, Hz, P). When there is no
ambiguity, the terms “boundary points” and “Pareto optimal points”
will be used interchangeably in the following sections of this paper.

III-B. A DC Approach to the SRM Problem (5)

Problem (5) still remains nonconvex due to its objective function
and constraint (5a). Nonetheless, one can notice that the objective
function of (5) and constraint (5a) are both in a difference-of-
concave form. This property makes problem (4) fall into the context
of DC program [9].

In this subsection, our endeavor is to show the DC approach to
(5) mathematically. The classical DC programming algorithms have
been extensively applied to deal with the nonconvex optimization
problems in many research activities, especially those arising in
MIMO systems [12]-[14]. Its basic idea is to locally linearize the
nonconcave parts in (5) at some feasible point via Taylor series
expansion (TSE), and then iteratively solve the linearized problem.
To start with, we introduce the TSE via the following lemma.

Lemma 1 ( [13]): An affine Taylor series approximation of a
function f(X) : RM*N _ R can be expressed at X as below.

F(X) = f(X) +vee (f (X)) veeX = X). (D)

The TSE above enables us to reformulate the primal nonconcave
parts of (5) into a linear form. In particular, by applying Lemma
1 and the fact 9 (log |X|[) = Tr (X~'9X), the second term in the
objective function of (5) can be approximated as (log(-) is natural
logarithm.)

log ’1 T HchHf‘
~ log (I + HQQCHE‘
- —1 H -
+ vec {Hf (I + HchHf) H2:| vec (Qc - Qc)

— log (I + H.Q.HY

+ Tr {(I + HchHgT) _1H2QcH§I}
—Tr {(I + HQQCHf) _1H2QCH§I:| ) 3

where Qc is a given transmit covariance matrix, and the last
equality is due to the fact that Tr(A”B) = (vec(A))"vec(B)
for appropriate dimensions of A and B. Likewise, the left hand
side (LHS) of constraint (5a) can be approximated as

log [T+ (I + HchHfI) _1HiQOHfI

= log ‘I +H:QH{ + H,QoH]

~ log |1+ H.Q.H]

~ log ‘I +H;Q.H/ + H,QoH/

—log ‘I—&- H.Q.H

~ Ty {(1 + Hiéch) 71Hi(QC - QC)Hﬁ] ) 9)
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Based on the approximations above, the original QoMS-
constrained SRM problem (5) can be reformulated as

R(Tms) = (golaé{ log |I + H1QCH{I

—Tr {(I + HchHﬁ’) TH(Q. - Qc)Hf]

—log ‘I+ H.Q.HY

s.t. log ‘I +H,Q.H + H,QH

—log ’1 +H,Q.HY

—Tr {(I + HchHf)lei(Qc - Qc)Hﬂ > Tins, = 1,2
(10a)

Tr(Qo + Q) < P,Qo = 0,Q. = 0, (10b)

where R(7pms) is the optimal objective value of (10), serving as an
approximation to R(Tms).

This approximated problem (10) is convex with regard to (w.r.t.)
(Qe, Qo) and hence (Q., Qo) can be iteratively obtained by solv-
ing problem (10). We summarize our proposed iterative algorithm
for solving (5) in Algorithm 1.

Algorithm 1 Iterative method for solving (5)

1: Initiate n = 0 and choose an arbitrary starting point Qc,n
feasible to (10)
2: Repeat

3 Solve (10) with Q. = Q.. and obtain Q}, which is the
optimal solution of (10);

4:  Update Qc,nﬂ =Q7;

5. Update n =n + 1;

6: Until the convergence conditions are satisfied.

In line 3 of Algorithm 1, the convex subproblem (10) can be
efficiently solved by CVX. Moreover, by directly applying the DC
convergence result [9, Th 10], we immediately have the following
conclusion.

Theorem 2: Every limit point of (Qg,QZ) is a stationary
(Karush-Kuhn-Tucker (KKT)) point of problem (5).

IV. A FAST IMPLEMENTATION FOR PHY-SI

As one may note that each DC iteration in (10) involves solving
a convex optimization problem to KKT optimality of (5), which
could be time consuming in practice. To mitigate the computational
load, we consider a fast and efficient implementation for PHY-SI
in this section, rather than seeking a KKT optimal one.

The drawback of solving (5) comes mainly from the coupling
of confidential message and multicast message, which renders
problem (5) nonconvex. To make (5) easier to handle, it is a natural
idea to seek some way to decouple these two sorts of messages in
the optimization if possible. To this end, our strategy is to separately
maximize the secrecy rate and multicast rate by introducing a power
splitting factor «, such that Tr(Q.) = aP and Tr(Qo) = (1—«)P.
Then we specify a secrecy rate R.(«) using the power allocated
to the confidential message, and find the maximum multicast rate
Ro () the remaining transmit power can achieve.

Specifically, R.(c) is chosen as the maximum secrecy rate with
Tr(Q.) = aP, ie.,

e 1og T QY]
Qom0 G <ar O I+HQHI|"

Problem (11) is a standard SRM problem in MIMO systems;
different methods have been proposed to find the stationary points
or near-optimal solutions to this problem, such as the GSVD

Re(a) = an

method [15], the alternating optimization (AO) method [16] and
the TSE method [12]. Among the existing methods, we choose the
GSVD method to solve (11) due to its efficient implementation and
approximate optimality in the high SNR regime [17]. The optimal
Q. generated from GSVD, denoted by Q.(c), could be obtained
by following the procedures in [15].

With Q.(«) returned by solving (11), next we will determine
the maximum multicast rate with Tr(Qo) = (1 — a)) P, which can
be obtained by solving the following optimization problem,

Ro(o) = | max o ain log T+ A(Qo)|- (12)

Qo0

in which A(Qo) = (I+H:Qc(a)H?) 'H,QoH. Clearly,
problem (12) is a convex optimization problem after recasting it
as an epigraph form. Thus, the optimal solution of problem (12),
Qo(a), can be obtained by CVX. Finally, traversing all « lying
within the interval [0, 1] will give rise to the secrecy rate region
achieved by this power spliting scheme.

V. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate the
secrecy rate region derived from our proposed DC approach. We
compare our results with the traditional service integration strate-
gies, which assign the confidential message and multicast message
to two different logic channels, for instance, two orthogonal time
slots. For the fairness of comparison, the secrecy rate and multicast
rate achieved by the time division multiple address (TDMA)-based
method should be halved [4].

In the simulation, unless specified, we assume Ny = 5, N, = 4,
N, = 4, P = 11.8 dB. As [2] did, we investigate the secrecy
rate regions achieved by deterministic channels. All channels are
generated from i.i.d. complex Gaussian distribution with zero mean
and unit variance.

First, we evaluate the convergence of our proposed DC al-
gorithm. Especially, we are concerned about whether the primal
QoMS constraint (5a) is violated by our approximation. Setting T,
as 2 bps/Hz, Fig. 1 shows the convergence of the multicast rate in
the iteration with two different initializations. As seen, the multicast
rates ultimately converge to our predefined multicast rate with a
limited number of iterations in both initialization. This observation
indicates the efficacy of TSE in approximating the multicast rate.
Then we also plot the achieved secrecy rates and the approximated
secrecy rates in Fig. 2. The result shows that they are coincident at
the convergence of our proposed algorithm.

Fig.3 plots the secrecy rate regions achieved by our proposed
DC and power splitting approaches. Meanwhile, we plot the TDMA
secrecy rate region as a benchmark. As expected, our proposed
methods achieves significantly larger secrecy rate regions compared
with the TDMA-based one, which implies the inherent advantage
of PHY-SI over traditional service integration. Additionally, one
can observe that there is small rate performance loss between the
power splitting approach and the DC approach, especially at low
QoMS region. This observation indicates that the power splitting
method may serve as a good approximation to the KKT optimal
transmit solution, with significant computational time saving.

To verify the computational complexity saving, we tabulated the
averaged running times of the two proposed methods in getting
one boundary point in Table I. One can see that the power splitting
method is much faster than the TSE-based one, especially for
large powers. In particular, the running time of the power splitting
method keeps almost invariant to the increase of power, whereas
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Table I. Averaged running times (in secs.)

Power (dB)
Method 4 8 12 16 20
Power splitting  0.65  0.65 0.58 0.64 0.7
TSE 6.05 8.16 1077 16.12 252

that of the TSE-based method scales nearly exponentially with the
power.

VI. CONCLUSION

In this paper, we consider the transmit design for two-user
MIMO broadcast channel with integrated confidential service and
multicast service. The transmit covariances of the confidential
message and multicast message are designed to maximize the
secrecy capacity region. Since the SCRM problem is a biobjective
optimization problem, a method of scalarization is proposed to
convert it into a standard scalar optimization problem, which can be
iteratively solved by DC algorithm. Next, we put forward a heuristic
power splitting scheme to facilitate the fast implementation of PHY-
SI. Numerical results show that, our proposed methods significantly
outperform the traditional TDMA-based one, and that there is only
a small performance gap between the power splitting method and
the TSE-based one.

VII. APPENDIX

First, we claim that problem (5) has some interesting properties
shown as below.

Property 1: The maximum objective value of problem (5),
R(Tms), is obtained only when the equality in (5a) holds.

Property 2: The optimal objective value of (5), denoted as
R(Tms), is monotonically decreasing w.r.t. Tpms.

VII-A. Proof of Property 1

The proof of Property 1 can be accomplished by contradiction.
Assume that the maximum value of problem (5) is obtained at
the solution (Qo, QC) and the equality in (5a) does not hold, i.e.,
min log|T + (T + H;Q:H) " HyQoHf| > 7ins.

Our next step is to construct a new solution (QO,QC) from
(Qo, QC), which achieves a larger objective value and satisfies the
QoMS constraint (5a) with equality. Specifically, we multiply Qo
by a scaling factor £ (0 < £ < 1) and add a positive semidefinite
(PSD) matrix E = pI — pHE (HoHE ) 'Hs to Q.. ie., Qo =
§Q0 and Q. = Qc + E, where the coefficient p controls the power
of E. Note that E is the orthogonal complement projector of H',
and its existence is guaranteed by the condition rank(Hs) = N, <

Iteration number

Fig. 2. Convergence of the secrecy rate

)

15 20 25

)

2 4 6 8 10 12 14
Multicast rate (bits/channel use)

Fig. 3. Secrecy rate regions

N;. To keep the total transmit power constant, the coefficient p
should be chosen to satisfy (1—&)Tr(Qo) = Tr(E) = p(N¢—Ne),

thatis, p = % To proceed, we need the following lemma.
Lemma 2 ( []8]) For matrices A,A > 0 and B > 0, the
following inequality hold:

|A + B| |A+ B+ A
Bl — [B+A]
Then, by applying Lemma 2, one can obtain
log|T + (I + HchHfI)ile‘QoHﬂ
>log|I + (1+ Hi(Q. + B)H!) "H,QoH|
>loglT+ (I+ HchHf{)ilHiQOHﬂ

13)

(14)

for any ¢ € {1, 2}. Thus, by adjusting the value of &, the equality
in (5a) could be achieved.

Next, we will show a larger objective value could always be
achieved by (Qo, Qc) To this end, we apply the Weyl theorem [19]
to get \e(I+H1QHY + HiEHY) > A\ (I+ H1Q.-HY), VE.
Meanwhile, due to the equality HoEHLY = 0, it is easy to
see \p(I+H2Q.HE + HoEHEY) = Mo (I+ HoQ.HLY), VE.
By applying the property det(A) =TI, Ai(A), we im-
mediately obtain log|I+H1QCHfI| > 10g|I+H1QCHfI|
and log|I + HoQ.HY| = log|I + H2Q.HE|, which yields
log|I + HchHHI —log|T + H,Q HY'| > log|I + H; Q.H{'|—
log|T + HoQ.HY |, i.e., a larger objective value can be found with
(Qg, Q.). This fact is contrary to the primal assumption, which
completes the proof of Property 1.

VII-B. Proof of Property 2

As for Property 2, we only need to note that increasing 7,s
would shrink the feasible region of problem (5). Hence, R(Tms)
must be monotonically nonincreasing w.r.t 7m,s. Furthermore, we
claim that any two distinct 7,,s cannot generate an identical
objective value of (5), since it will contradict Property 1. This
completes the proof of Property 2.

Back to Theorem 1, let us denote the set of objective values
(1-by-2 vectors) of feasible points of (4) as O. Suppose that
(r1,72), (r3,r4) are two arbitrary rate pairs in O, for which
r1 # rs. From our problem formation of (5) and Property 1, it
is immediate to get (r1, R(r1)) tRi (r1,72), (r3, R(r3)) rRr2
(r3,r4). According to Property 2, if 71 2 r3, then we will have
R(r1) S R(rs3). Consequently, (r1, R(r1)) and (73, R(r3)) are both
Pareto optimal points of (5), since it is impossible to increase any
one element of (r1, R(r1)) (or (r3, R(rs))) without decreasing the
other one element of it. Substituting 71 (or 73) by Tys, We then
complete the proof of Theorem 1.
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