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ABSTRACT

In this paper, we consider a wireless network with one full-duplex
(FD) base station (BS) and a set of half-duplex (HD) user equip-
ments (UEs). In such scenario, in addition to the self-interference,
the co-channel interference from uplink UEs to downlink UEs is the
main bottleneck for the network performance. To overcome this,
we consider the problem of maximizing the minimum fairness rate
among all UEs by jointly determining the UE uplink/downlink di-
rections and pairing the UEs over different resource blocks. We first
show that the UE pairing problem is NP-hard in general. To develop
efficient suboptimal algorithms, we formulate the considered prob-
lem as a mixed integer linear program and handle it by the iterative
reweighted `q-norm minimization (IRM) method. In particular, we
propose a two-stage IRM algorithm that determines the UE trans-
mission directions in the first stage followed by optimizing the UE
pairs in the second stage. Simulation results are presented to show
the efficacy of the proposed algorithm over some heuristic methods.

Index Terms— Full duplex, user pairing, max-min fairness, `q-
norm approximation, mixed integer linear programming.

1. INTRODUCTION

Full-duplex (FD) technology, which enables a transceiver to receive
and transmit signals at the same time and over the same frequency,
has drawn considerable attention recently. Conventionally, the self-
interference (SI) has limited the deployment of FD systems. How-
ever, recent advances in analog and digital interference cancellation
schemes have shown that the SI can be effectively mitigated [1, 2].
Therefore, FD systems have been considered in a variety of scenarios
including relay networks [3, 4], cellular networks [5, 6] and hetero-
geneous networks (HetNets) [7–9].

This paper considers a wireless system consisting of one FD
base station (BS) and a set of half-duplex (HD) user equipments
(UEs). Different from the traditional HD BS, the FD BS can com-
municate with the UEs for downlink and uplink transmissions si-
multaneously. In such FD system, however, the UEs performing
uplink transmission (i.e., uplink UEs) can severely interfere with the
UEs that are receiving data from the BS (i.e., downlink UEs). This
new form of co-channel interference (CCI) significantly constrains
the network performance and is a major bottleneck in FD multi-user
systems [5, 10]. In view of this, there have been several researches
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aiming at mitigating the CCI through judicious resource allocation
and transmission scheduling. For example, reference [6] considered
the problem of pairing an uplink UE and a downlink UE for trans-
mission in a resource block (RB), and proposed heuristic algorithm-
s for network throughput maximization and UE outage probability
minimization. Reference [11] proposed joint UE pairing and power
control in a time-sharing system, for maximizing the sum rate of the
network. In both [6] and [11], whether a UE works as an uplink UE
or a downlink UE is predetermined in advance of UE pairing. Dif-
ferent from [6] and [11], reference [12] considered that the UEs can
either be an uplink UE or a downlink UE, and proposed to jointly
determine the transmission directions of UEs (i.e., uplink/downlink
UE assignment) and perform UE pairing for sum rate maximization
in an orthogonal frequency division multiple access (OFDMA) sys-
tem. Reference [7] considered a multi-cellular scenario with mixed
FD/HD BSs and studied the joint FD/HD mode selection, user pair-
ing and subcarrier allocation problem.

In this paper, we consider a multi-user OFDMA system with
one FD BS and a set of HD UEs. Similar to [12], we consider the
problem of joint uplink/downlink UE assignment and UE pairing.
However, unlike [12], we consider the design problem of optimiz-
ing the max-min fairness (MMF) (uplink/downlink) rate of all UEs.
The MMF criterion guarantees that each UE can be assigned to at
least one RB as long as the number of RBs is sufficiently large. We
focus on two aspects of such design problem, namely, complexity
and algorithm. Firstly, we show that solving the UE assignment and
pairing problem is at least as difficult as solving a 3-dimensional
matching problem which is known to be NP-complete [13]. Second-
ly, we formulate the UE assignment and pairing problem as a mixed
integer linear program (MILP), and propose to handle it by the `q-
norm approximation and iterative reweighted minimization (IRM)
method [14]. More specifically, we propose a two-stage IRM algo-
rithm that assigns the uplink/downlink transmission directions of the
UEs in the first stage, followed by optimizing the UE pairs over RBs
in the second stage. Simulation results show that the proposed two-
stage algorithm outperforms the (one-stage) IRM method as well as
the heuristic method based on simple relaxation, especially when the
number of RBs is limited.

2. SYSTEM MODEL

We consider a single-cell wireless system consisting of one FD BS
and M HD UEs. The BS and each of the UEs are equipped with
a single antenna. The FD BS is able to transmit and receive data
simultaneously. We assume that there are B RBs available for data
transmission. Over each RB, one UE (i.e., uplink UE) can commu-
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nicate with the BS, and the BS can send data to another UE (i.e.,
downlink UE) at the same time. We say that a pair of UEs (i, j) is
allocated over RB b if UE i is a downlink UE while UE j is an up-
link UE over RB b. Following the OFDMA principle, we limit only
one pair of UEs to be allocated to each RB. Throughout the paper,
we assume thatM ≤ 2B; otherwise, there must exist one UE which
can never be assigned to any RB.

Suppose that UE pair (i, j) is allocated over RB b. Then the
signal received at downlink UE i is given by

ybi =
√
P0h

b
is
b
0i +

√
Pjf

b
jis

b
j0 + nbi , (1)

where P0 ≥ 0 and Pj ≥ 0 are the transmission powers of the BS and
UE j, respectively; hbi ∈ C is the downlink channel between the BS
and UE i, and fbji ∈ C is the channel between UE j and UE i over
RB b. Moreover, sb0i ∈ C and sbj0 ∈ C are the information signals
sent from the BS to UE i and from UE j to the BS, respectively. In
(1), nbi ∼ CN (0, σ2

i ) represents the additive white Gaussian noise
(AWGN) with mean zero and variance σ2

i . As seen, the first term in
the right-hand side (RHS) of (1) is the desired signal of UE iwhereas
the second term is the CCI caused by uplink UE j.

On the other hand, the signal received by the BS over RB b is
given by

yb0 =
√
Pjg

b
js
b
j0 +

√
P0∆hb0s

b
0i + nb0, (2)

where gbj ∈ C is the uplink channel between UE j and the BS over
RB b, and nb0 ∼ CN (0, σ2

0) is the AWGN at the BS. The second term
in the RHS of (2) is caused by the SI due to the FD BS. Here we as-
sume that the SI has been properly suppressed via some interference
cancellation schemes [1, 2]. Thus,

√
P0∆hb0s

b
0i in (2) represents the

residual SI, and ∆hb0 ∈ C represents the SI channel estimation error.
Assume that the average powers of information signals are all

equal to one. According to (1) and (2), when UE pair (i, j) is al-
located to RB b, the achievable downlink rate of UE i is given by

Rdij(b) = log2

(
1 +

P0|hbi |2

Pj |fbji|2 + σ2
i

)
. (3)

Analogously, the achievable uplink rate of UE j over RB b is

Ruij(b) = log2

(
1 +

Pj |gbj |2

P0E
[
|∆hb0|2

]
+ σ2

0

)
, (4)

where E[|∆hb0|2] is the average power of the SI channel estimation
error. One can see from (3) and (4) that the choice of UE pair (i, j)
has a significant impact on the achievable (uplink/downlink) rates of
UEs, since uplink UEs can interfere with downlink UEs, especially
they are in close proximity. In the next section, we propose a for-
mulation that optimally assigns the transmission direction and pairs
UEs over the RBs.

3. PROPOSED UE PAIRING FORMULATION AND
ALGORITHMS

In this section, we formally formulate the considered joint UE as-
signment and pairing problem. We assume that the transmission
powers P0 and Pj are fixed. We will first show that the problem
is in fact NP-hard, and then propose an efficient algorithm for han-
dling the UE assignment and pairing problem.

3.1. Problem Formulation and Complexity Analysis

We useM , {1, 2, ...,M} and B , {1, 2, ..., B} to represent the
sets of UEs and RBs, respectively. Assume that all UEs always have
data to transmit and receive. Thus each UE can either work as an

uplink UE or a downlink UE. We use a binary variable αi ∈ {0, 1}
to indicate whether UE i is assigned as an uplink UE (αi = 0) or
a downlink UE (αi = 1). In addition, we use a binary variable
xbij ∈ {0, 1} to denote whether UE pair (i, j) is allocated over RB b

(xbij = 1) or not (xbij = 0). In particular, if xbij = 1, then UE i is
assigned to be a downlink UE, UE j is assigned to be an uplink UE,
and they are paired to occupy RB b. Obviously, UE assignment and
pairing has to satisfy the following constraints:
• OFDMA Constraint: Under the OFDMA constraint, only one

pair of UEs can be allocated to each RB, i.e.,∑
i∈M

∑
j∈M

xbij = 1, ∀ b ∈ B, (5)

xbij ∈ {0, 1}, ∀ i, j ∈M, ∀ b ∈ B. (6)
• HD Transmission Constraint: Note that one UE could be as-

signed to more than one RB. However, since the UEs are HD,
if one UE is assigned for uplink transmission (downlink re-
ception) in one RB, then it must also perform as an uplink
(downlink) UE when assigned to other RBs. To ensure this,
we impose the following constraints

xbij ≤ αi, ∀ j 6= i, ∀ i, j ∈M, ∀ b ∈ B, (7)

xbji ≤ 1− αi, ∀ j 6= i, ∀ i, j ∈M, ∀ b ∈ B, (8)
αi ∈ {0, 1}, ∀ i ∈M. (9)

Denote {xbij} as the set of binary variables xbij for all i 6= j, i, j ∈
M and b ∈ B. Then, given {xbij}, the achievable rate of each UE i
can be expressed as

Ri ,
∑
b∈B

∑
j∈M

(
xbijR

d
ij(b) + xbjiR

u
ji(b)

)
. (10)

Due to the OFDMA constraint and the HD transmission constraint
above, Ri in (10) is either the uplink sum rate or the downlink sum
rate of UE i.

In this paper, we are interested in optimally determining the up-
link/downlink transmission directions {αi} for all UEs and the UE
pairs {xbij} for maximizing the MMF rate. Mathematically, it is for-
mulated as the following optimization problem

(P) max
{xbij},{αi}

{
min
i∈M

Ri

}
(11a)

s.t. (5)− (9) (11b)
To achieve a non-zero MMF rate, every UE must be allocated to

at least one RB and paired with some other UEs. This implies that
the following constraints∑

b∈B

∑
j∈M

(xbij + xbji) ≥ 1, ∀ i ∈M, (12)

have to hold. In addition, as there should not exist more downlink
(uplink) UEs than the number of RBs, the solution of (P) should
automatically satisfy∑

i∈M

αi ≤ B and
∑
i∈M

(1− αi) ≤ B. (13)

By adding (12) and (13) to (P), and reformulating the resultant prob-
lem as an epigraph form, we obtain

max
τ,{xbij},{αi}

τ (14a)

s.t. Ri ≥ τ, ∀ i ∈M, (14b)
(5)− (9), (12), (13). (14c)
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We remark that adding constraints (12) and (13) to problem (P)
seems redundant and unnecessary at the first glance. However, as
will become clear shortly, we will relax the binary variables in (6)
and (9) to approximately handling (14). In that case, adding these
constraints can effectively reduce the feasible region of the relaxed
problem and improve the algorithm performance in practice.

Problem (14) is an MILP which is difficult to solve in general.
In fact, problem (14) is intrinsically difficult from the complexity
theory point of view.

Theorem 1 Problem (14) (and (P)) is NP-hard.

The proof of Theorem 1 is based on showing that solving prob-
lem (14) is at least as difficult as solving the 3-dimensional matching
problem, which is known as a NP-complete problem [13]. In fact,
our analysis shows that, even if the uplink/downlink directions of
UEs have been determined, the remaining UE pairing problem is
still NP-hard in general. The details of the proof are omitted due
to the space limitation. In view of the NP-hardness, we present ef-
ficient suboptimal algorithms for handling problem (14) in the next
subsection.

3.2. `q−Norm Approximation and IRM Algorithm

The challenges for solving problem (14) is mainly caused by the
binary constraints (6) and (9). Since (5) and (6) constitute the OFD-
MA constraints, they can be handled by the `q-norm approximation
method in [15]. Specifically, let us consider the following problem

max
τ,{xbij},{αi}

τ − λ
∑
i∈M

∑
j∈M

∑
b∈B

(
xbij + ε

)q
(15a)

s.t. 0 ≤ xbij ≤ 1, ∀ i, j ∈M, ∀ b ∈ B, (15b)
(5), (7)− (9), (12), (13), (14b), (15c)

where λ > 0, q ∈ (0, 1), and ε > 0 are some parameters. By com-
paring problem (15) with (14), constraint (6) is replaced by (15b)
and a penalty term−λ

∑
i∈M

∑
j∈M

∑
b∈B

(
xbij + ε

)q
is added in

(15a). It has been shown in [15,16] that for sufficiently large λ, (15)
can approximately have the same optimal solution as (14) and the
approximate error goes to zero as λ goes to infinity. Therefore, we
consider solving (15) instead.

Note that problem (15) is still difficult to solve due to the binary
variables {αi} in (9) and the non-convex `q-norm regularization in
(15a). Since binary {αi} can be obtained once {xbij} are binary, we
simply relax (9) as

0 ≤ αi ≤ 1, ∀ i ∈M. (16)

Then we use the iterative reweighted minimization (IRM) algorithm
in [14] to handle the non-convex `q-norm term. The IRM method
iteratively approximates the non-convex `q-norm term by its first-
order approximation. In particular, at the r-th iteration of the IRM
algorithm, we solve the following problem:

max
τ,{xbij},{αi}

τ − λq
∑
i∈M

∑
j∈M

∑
b∈B

wbij(r)x
b
ij (17)

s.t. (5), (7), (8), (12), (13), (14b), (15b),

where wbij(r) ,
(
xbij(r − 1) + ε

)q−1
, and xbij(r − 1) denotes the

value of the variable xbij at the (r − 1)-th iteration. Problem (17) is
an LP and thus can be efficiently solved by off-the-shelf LP solvers.
The IRM method for solving (15) is shown in Algorithm 1, where

Algorithm 1 IRM Algorithm for Solving Problem (15)

Initialization:
1: Given q ∈ (0, 1), λ, ε ∈ (0, 1), σ1 ∈ (0, 1), σ2 ∈ (0, 1) and
κ > 1.

2: Given a feasible solution {xbij(0)} of (15).
3: Set wbij(1) =

(
xbij(0) + ε

)q−1
.

4: repeat
5: Set r = 1.
6: repeat
7: Obtain τ(r), {xbij(r)} and {αi(r)} by solving (17).
8: Updatewbij(r+1) =

(
xbij(r) + ε

)q−1
, ∀ i, j ∈M, ∀ b ∈

B.
9: r ← r + 1.

10: until
∑
i∈M, j∈M, b∈B |x

b
ij(r)− xbij(r − 1)| ≤ σ1

11: λ← κλ.
12: until

∑
b∈B

({
xbij(r)

}
ij

)
2
≤ σ2

Output: Round {xbij} and {αi} to {0, 1} and output the solution.({
xbij(r)

}
ij

)
2

denotes the second largest element in the set {xbij(r)}
for each b ∈ B.

We have some remarks on Algorithm 1. Firstly, a simple way
to obtain the initial {xbij(0)} is to solve (14) with relaxed {αi} and
{xbij}. Secondly, in practice, it is better to adaptively adjust param-
eters ε and λ with the iteration index r; see [15, 16] for the details.

3.3. Proposed Two-Stage IRM Algorithm

Intriguingly, the IRM algorithm presented in Algorithm 1 does not
always yield satisfactory performance in practice, especially when
M = 2B (i.e., each UE has to occupy exactly one RB; otherwise
the MMF rate is zero). The reason is that the IRM algorithm does
not globally solve (15) in general, and as a result cannot guarantee
to return binary {αi} and {xbij}. When M = 2B, simply rounding
fractional {αi} and {xbij} to the binary set may give solutions that
do not satisfy (12), i.e., some UEs are not paired and assigned to any
RB which leads to a zero MMF rate in (11a).

To overcome this practical issue, we propose to solve (14) in
a two-stage manner. In particular, in the first stage, we focus on
determining the uplink and downlink assignment of UEs, i.e., we
first determine {αi}. Once {αi} is determined, we then focus on
determining the UE pairs {xbij}. To implement the first stage, let us
consider the following problem originated from (14):

max
τ,{xbij},{αi},{βi}

τ −
∑
i∈M

µ

(
(αi + ε1)q + (βi + ε1)q

)
(18a)

s.t. αi + βi = 1, ∀ i ∈M, (18b)
0 ≤ αi ≤ 1, ∀ i ∈M, (18c)
0 ≤ βi ≤ 1, ∀ i ∈M, (18d)

0 ≤ xbij ≤ 1, ∀ i, j ∈M, ∀ b ∈ B, (18e)
(5), (7), (8), (12), (13), (14b). (18f)

In (18), we have introduced new variables βi ∈ [0, 1] for all i ∈M,
added constraint (18b), relaxed (6) to (18e), and added the `q-norm
regularization in (18a). As seen, in contrast to (15), problem (18)
attempts to obtain binary (or close to binary) solutions of {αi} by
using the `q-norm penalty

∑
i∈M µ((αi + ε1)q + (βi + ε1)q). Like

(15), an IRM method similar to Algorithm 1 can be used to handle
(18). We denote {α?i } as the solution obtained by solving (18).
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Fig. 1. The MMF rate for 10 random channel realizations and with
B = 8, M = 16.

In the second stage, we fix {αi} in problem (15) with {α?i } , and
only optimize (15) with respect to {xbij} and τ ; that is, we consider
solving the following problem in the second stage

max
τ,{xbij}

τ − λ
∑
i∈M

∑
j∈M

∑
b∈B

(
xbij + ε

)q
(19a)

s.t. xbij ≤ α?i , ∀ j 6= i, ∀ i, j ∈M, ∀ b ∈ B, (19b)

xbji ≤ (1− α?i ), ∀ j 6= i, ∀ i, j ∈M, ∀ b ∈ B, (19c)
(5), (12), (14b), (15b). (19d)

Problem (19) can be handled by Algorithm 1. As {αi} are fixed in
problem (19), solving problem (19) is more likely to return binary
xbij compared to solving (15). Simulation results in the next subsec-
tion will examine the performance of the two-stage IRM algorithm.

4. SIMULATION RESULTS

In this section, we consider the FD multi-user OFDMA system as
described in Section 2. In our simulation, the transmission powers
of all UEs are set to Pj = 23 dBm, and the total transmission power
of the BS is set to 43 dBm, which is equally allocated to the B
RBs. TheM UEs are randomly and uniformly located within a circle
centered at the BS and with a radius 100 m. For the channel model,
the path loss is set to 140.7 + 36.7 log10(d) (dB), where d (km)
denotes the distance between the transmitter and the receiver. The
channel fading coefficients of all links are generated following the
complex Gaussian with zero mean and unit variance. The averaged
SI channel estimation error power E[|∆hb0|2] is set to be−110 dBm.
Moreover, the noise power σ2

0 = σ2
i = −90 dBm for all i ∈ M.

The parameters used in Algorithm 1 are set to: q = 0.5, ε(0) =
ε1(0) = 0.1, σ1 = 10−3, σ2 = 0.1, κ = 1.1, λ = µ = 1.

We examine the performance of the following four algorithm-
s, namely, (i) the (one-stage) IRM algorithm, i.e., Algorithm 1, (ii)
the two-stage IRM algorithm, (iii) the exhaustive search method (by
employing the MILP solver CPLEX [17]), and (iv) the simple relax-
ation method (which relaxes binary {xbij} and {αi} to [0, 1] in (14)
and rounds the solution to the binary set {0, 1}).

Figure 1 displays the MMF rate achieved by the IRM algorith-
m (Algorithm 1), the two-stage IRM algorithm and the exhaustive
search method (CPLEX), for 10 random channel realizations with
B = 8 and M = 16. As expected, the exhaustive search method
yields the highest MMF rate. Moreover, we can see from Fig. 1 that

Table 1. The percentage of channel realizations for which (12) is not
satisfied for some i ∈ M. The results are obtained over 50 channel
realizations with B = 8 and various numbers of UEs.

No. of UEs (M ) 6 8 10 12 14 16
Two-stage IRM 0% 0% 0% 0% 0% 0%
IRM (Algorithm 1) 0% 0% 8% 16% 26% 36%
Simple Relaxation 0% 2% 16% 44% 84% 98%
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Fig. 2. Average MMF rate versus number of UEs, with B = 8.

the proposed two-stage IRM algorithm performs much better than
Algorithm 1 most of the time. Specifically, one can observe that Al-
gorithm 1 gives a zero MMF rate for the 4th, 6th, and 9th channel
realizations. The reason for this is that the binary solution obtained
from Algorithm 1 (after rounding) cannot satisfy constraint (12) very
often, which means that there exist UEs who are not paired and not
assigned to any RB.

Indeed, this undesirable phenomenon can occur more frequently
when the number of UEs is close to two times of the number of RBs,
i.e., M = 2B. To verify this, we show in Table 1 the percentage of
channel realizations for which there exist unpaired UEs. The results
are obtained by testing 50 channel realizations. We can observe from
Table 1 that the proposed two-stage IRM method can successfully
pair all the UEs from M = 6 to M = 16, whereas Algorithm 1 has
36% of realizations to yield zero MMF rate when M = 16. The
results of the simple relaxation method are also shown in Table 1,
which has an even worse performance.

In Figure 2, we further display the average MMF rates versus
the number of UEs for 50 channel realizations. As seen from Fig. 2,
while the average MMF rate decreases with the number of UEs, the
proposed two-stage IRM algorithm performs very well, and outper-
forms Algorithm 1 and the simple relaxation method whenM ≥ 10.

In summary, we have studied the joint UE transmission direction
assignment and UE pairing problem for maximizing the MMF rate in
the FD OFDMA system. We have shown that the UE assignment and
pairing problem is NP-hard in general and formulated the problem as
an MILP. In light of the practically poor performance of the heuristic
method by simple relaxation and rounding, we have proposed the
two-stage IRM algorithm for achieving high-quality solutions. The
presented simulation results have demonstrated that the two-stage
IRM algorithm outperforms the one-stage IRM algorithm and the
simple relaxation method, especially when the number of UEs is
close to twice of the number of RBs.
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