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ABSTRACT

We consider the global energy efficiency (GEE) maximization prob-
lem for the general non-regenerative MIMO relay network, under
the maximum power constraints for each user and each relay. The
problem is reformulated through the fractional optimization tech-
nique, and the mean square error receiver filter is considered. By
applying the alternating minimization method, we simplify the prob-
lem into several convex quadratic constrained quadratic program-
ming subproblems, and solve the subproblems by the feasible shrink-
age method combined with the sequential quadratic programming
method. Because the result highly depends on the initialization, we
design a deterministic initialization by introducing an auxiliary pow-
er minimization problem. Simulation results show that our proposed
algorithm can achieve more than 10 times higher GEE than the pre-
vious works which are not tailored for GEE maximization.

Index Terms— MIMO relay, energy efficiency, deterministic
initialization, sequential quadratic programming

1. INTRODUCTION

Non-regenerative MIMO relay networks have been widely studied,
as one extension of MIMO networks. With the assistance of relays,
networks are more reliable and more performing. Fundamental s-
tudies for MIMO amplify-and-forward (AF) relay networks have in-
vestigated different aspects, such as resource allocation and sum rate
maximization. For power allocation problems, different models and
algorithms are summarized in [1], which analyzes the diagonaliza-
tion of channel matrices. For sum rate maximization problems, a
weighted mean square error minimization (WMMSE) model is pro-
posed, and the precoders and the relay AF matrices with the MMSE
receiver filter are designed [2]. Another approach is to approximate
the sum rate maximization by the total signal to total interference
plus noise ratio (TSTINR) maximization [3–6]. It supports multiple
data stream transmission by introducing orthogonality constraints,
and proposes algorithms to determine the numbers of transmit da-
ta streams as preprocess; distributed algorithms with local channel
state information (CSI) are designed as well [7].

Energy efficiency (EE) is another effective way to balance quali-
ty of service and power consumption. The next generation of cellular
networks (5G) require a 1000x increase of data-rate to support the
exponentially growing amount of connected devices. However, due
to sustainable growth concerns, this increase must be obtained at half
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of the energy consumption of today’s networks. Consequently this
requires a 2000x increase of the bit-per-Joule energy efficiency [8].
Thus the “Green Communication” concept is attracting more and
more attention [9–12]. Some works have explored the algorithms to
solve the EE problem for MIMO relay networks [13–19]. In [13] a
low-complexity algorithm to jointly allocate source and relay power
is proposed; the energy-efficient power allocation problem is con-
sidered in [14], where a high Signal-to-Noise-Ratio (SNR) approxi-
mation is employed; the authors in [15] design the relay AF matrix
by linearizing the nonconvex part in the optimization problem, for a
two-user network. In [9], interference neutralization (IN) technique
is introduced and a non-cooperative game is applied, where both the
individual EE and the global EE (GEE) are maximized. Due to the
introduction of EE, the nonlinear fractional optimization technique
is widely used [16]. In [17] the sequential quadratic approximation
technique is applied to simplify the problem. For the asymmetric
two-way MIMO relay network with statistical CSI, the EE and the
spectral efficiency problem are solved by [18]. For DF relay-aided
MIMO-OFDMA networks, the interference alignment technique is
applied by [19] which optimizes EE in a distributed fashion.

Most of the above mentioned studies only consider networks as-
sisted by one single relay, while the general two-hop multi-relay MI-
MO interference network has not been investigated so far. In this
paper, we propose an efficient algorithm to solve the GEE prob-
lem for general MIMO relay AF networks. In line with previously
mentioned works, we consider a MIMO half-duplex amplify-and-
forward relay network, making the following main contributions:
1) the formulation of the GEE maximization model for multi-hop
multi-link MIMO interference networks;
2) the design of the precoding matrices and relay AF matrices based
on the fractional optimization technique with MSE receiver filter,
and the introduction of the deterministic initialization;
3) the numerical assessment of the achievable GEE with 10-fold per-
formance gain compared to the state of the art.
The rest of the paper is organized as follows. The system model
and the corresponding optimization problem is introduced in Sec-
tion 2. Section 3 shows the algorithm to tackle the GEE problem.
Simulation results in Section 4 show the efficiency of the proposed
algorithm compared to the previous works.

Notation: C represents the complex domain. Re means the real
part. Id represents the d × d identity matrix. ⊗ represents the Kro-
necker product. vec(A) is a column vector consisting of the columns
of A. K and R represent the set of the user indices {1, 2, . . . ,K}
and that of relay indices {1, 2, . . . , R}, respectively.
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2. SYSTEM MODEL

A two-hop half-duplex MIMO interference channel with K user
pairs and R relays is considered. The transmitted signal vector of
User k is denoted as sk ∈ Cdk×1, where dk is the number of trans-
mit data streams, and E(sksHk ) = Idk . Suppose Transmitter k, Re-
ceiver k and Relay r have Mk, Nk and Lr antennas, respectively,
for all k ∈ K and r ∈ R. We assume that there are no direct links
between users, and perfect CSI is available at a central controller.

The transmission process consists of two phases. In the first
phase, each transmitter transmits its precoded signal to all relays.
Relay r receives the signal xr =

∑
k∈K GrkUksk + nr , where

Uk ∈ CMk×dk is the precoding matrix of User k, Grk ∈ CLr×Mk

is the channel matrix between Transmitter k and Relay r, and nr

is the local noise at Relay r, with zero mean and variance matrix
σ2
rILr . In the second phase, Relay r multiplies the received signal

by its AF matrix Wr ∈ CLr×Lr , and obtains tr = Wrxr . Then
tr is transmitted to all receivers. Receiver k multiplies the received
signal by its decoding matrix Vk ∈ CNk×dk , and finally obtains:

ỹk = VH
k Tkksk︸ ︷︷ ︸

desired signal

+
∑

q∈K,q ̸=k

VH
k Tkqsq︸ ︷︷ ︸

interference

+
∑
r∈R

VH
k HkrWrnr +VH

k zk︸ ︷︷ ︸
noise

.

Let Tkq =
∑

r∈R HkrWrGrqUq be the effective channel from
Transmitter q to Receiver k. Here Hkr ∈ CNk×Lr is the channel
matrix between Relay r and Receiver k, and zk is the noise at Re-
ceiver k, with zero mean and variance matrix µ2

kINk . It consists of
the desired signal, the interference from other users and the noise
including relay enhanced noise and the local noise.

Let us define {W−r} = {W1, . . . ,Wr−1, Wr+1, . . . ,WR},
{U−k}, Ḡrk = GrkUk, W̄rk = WrGrk, H̄kr = HkrWr ,
and V̄kr = VH

k Hkr . Motivated by the need for energy efficiency
improvement, we want to design the precoding matrices {U} =
{Uk, k ∈ K} and the relay AF matrices {W} = {Wr, r ∈ R},
for global energy efficiency maximization, defined as the network
sum-rate over the network total power consumption [9]:

GEE =
Rsum

PU + PR + PC
. (1)

The GEE in (1) is measured in bit-per-Joule and represents the
network benefit-cost ratio in terms of amount of information re-
liably transmitted per Joule of consumed energy. Here Rsum =
1
2

∑
k∈K log2det(INk + F−1

k TkkT
H
kk) is the sum rate of the

network, and Fk =
∑

q ̸=k,q∈K TkqT
H
kq +

∑
r∈R σ2

rH̄krH̄
H
kr

+µ2
kINk . PU =

∑
k∈K PU

k and PR =
∑

r∈R PR
r are the to-

tal transmit power of users and relays, respectively, where PU
k =

∥Uk∥2F and PR
r =

∑
k∈K ∥WrGrkUk∥2F + σ2

r∥Wr∥2F . PC is
the circuit power of the network, which is assumed as a constant.

Considering the individual user and individual relay power con-
straints, we formulate the GEE maximization model as the following
optimization problem:

max
{U},{W}

GEE =
Rsum

PU + PR + PC
(2a)

s. t. ∥Uk∥2F ≤ pUk , k ∈ K, (2b)∑
k∈K

∥WrGrkUk∥2F + σ2
r∥Wr∥2F ≤ pRr , r ∈ R, (2c)

where pUk and pRr are the power budgets for User k and Relay r,
respectively. As a highly nonlinear nonconvex matrix optimization
problem, it is very difficult to solve problem (2) optimally.

3. APPROXIMATION MODEL AND ALGORITHM

In this section, we first approximate the GEE model as a more
tractable optimization problem, and then propose an efficient algo-
rithm to tackle the problem.

3.1. Problem reformulation

In order to handel the fractional function in (2a), we apply the frac-
tional optimization technique [20], introduce a new parameter C,
and reformulate (2) as:

min
{U},{W}

C(PU + PR)−Rsum s. t. (2b)− (2c). (3)

Here the constant CPC is omitted in the objective function. The
parameter C is updated as

C =
Rsum

PU + PR + PC
=

Rsum

Psum
. (4)

Similar to [3, Theorem 2], providing the update strategy of C as (4),
we can prove that all the KKT points of problem (3) are the KKT
points of problem (2). Next, we consider solving (3) instead of (2).

At each receiver, we use the linear MMSE filter, which mini-
mizes the mean square error between the transmit data vector sk and
its soft estimate at the receiver. Defining F̄k = TkkT

H
kk + Fk, the

linear MMSE receiver for user k is written as

Vk = F̄−1
k Tkk. (5)

Then the MSE matrix at Receiver k is obtained: EMMSE
k = VH

k F̄kVk−
VH

k Tkk − TH
kkVk + Idk . Furthermore, by introducing auxiliary

weight matrix variables Sk for all k ∈ K, we can show that the
following problem has the same KKT points as (3) [2]:

min
{U},{W}
{V},{S}

C(PU + PR) +
∑
k∈K

[
tr
(
SkE

MMSE
k

)
− log2det(Sk)

]
s. t. (2b)− (2c). (6)

Due to the KKT conditions, the weight matrix Sk is set as

Sk = (EMMSE
k )−1 = Idk +TH

kkF
−1
k Tkk. (7)

It holds that
∑

k∈K
[
tr
(
SkE

MMSE
k

)
− log2det(Sk)

]
= −Rsum. In

this case, (3) and (6) have the same objective function values.

3.2. Alternating minimization

Here we apply the alternating minimization method to tackle prob-
lem (6). First, in each iteration, the decoding matrix Vk and the
weight matrix Sk are updated by (5) and (7), respectively, for all
k ∈ K. Then, fixing {U}, {V}, {S} and {W−r}, the subproblem
for the relay AF matrix Wr is

min
X∈CLr×Lr

tr
[
XArX

H(
∑
k∈K

V̄H
krSkV̄kr + CILr )

]
−2Re

[∑
k∈K

∑
q∈K

∑
l̸=r,
l∈R

tr(XḠrqḠ
H
lqW

H
l V̄H

klSkV̄kr)
]

s.t. tr
(
XArX

H)
≤ pRr ,

where X represents Wr , Ar =
∑

k∈K ḠrkḠ
H
rk + σ2

rILr . Its
equivalent form is:

min
x

xHB̄1x+ b̄Hx+ xH b̄ s.t. xHx ≤ pRr . (8)
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Here x = Q · vec(X), B̄1 = Q−HB1Q
−1 and b̄ = Q−1b;

b =
∑

k∈K
∑

q∈K
∑

l̸=r,l∈R V̄H
krSkV̄klWlḠlqḠ

H
rq , B1 = Ar ⊗

(
∑

k∈K V̄H
krSkV̄kr+CILr ); Q ≻ 0 is computed by the eigenvalue

decomposition of B2 = Ar ⊗ ILr as B2 = QHQ. An efficient
algorithm to solve problem (8) optimally is shown in [21, Chapter
6.1.1].

If we fix {V}, {W}, {S} and {U−k}, the subproblem for the
precoding matrix Uk is:

min
X∈CMk×dk

tr
{
XH[

C(IMk+
∑
r∈R

W̄H
rkW̄rk)+

∑
q∈K

JH
qkSqJqk

]
X
}

−tr(SkJkkX+XHJH
kkSk)

s.t. ∥X∥2F ≤ pUk ,

tr(XHW̄H
rkW̄rkX) ≤ ηr, r ∈ R. (9)

Here X represents Uk, Jqk =
∑

r∈R V̄qrW̄rk and ηr = pRr −
σ2
r∥Wr∥2F −

∑
q ̸=k,q∈K ∥W̄rqUq∥2F . As a special structured con-

vex quadratic constrained quadratic programming (QCQP) problem,
it can be solved optimally by the feasible shrinkage (FS) method
combining the sequential quadratic programming (SQP) method.
This hybrid algorithm is proposed in [3, Section B-(3)-c], which
performs much faster than the interior point method such like Sedu-
mi and CVX. The FS method works as the efficient initialization for
the SQP method, and its idea is to use one quadratic constraint to
approximate the original quadratic constraints. The main idea of the
SQP method is to solve a quadratic programming (QP) subproblem
in each iteration, where the objective function is the second order
Tailor expansion of the Lagrangian function and the constraints are
the linearizations of the original constraints [21, Alg 12.2.2]. The
detailed description of the method is omitted due to the space limit.

3.3. Deterministic initialization

Due to the nonconvexity of problem (6), the achieved GEE by
alternatively updating the variables is highly dependent on the
initialization. It will lead to poor performances if we simply ran-
domly generate initial variables and scale them to be feasible.
Empirically we have observed that, if a large power is used as ini-
tialization, the power level does not change significantly during the
execution of the algorithm. To overcome the disadvantage caused by
random initializations, we introduce an auxiliary problem. It min-
imizes the total transmit power of users and relays while requiring
that the achieved sum rate is above a prefixed threshold:

min
{U},{W}

PU + PR s.t. Rsum ≥ r0. (10)

Here r0 is a constant. The detailed setting of r0 is shown in Section
4. By solving this problem suboptimally, we can obtain a good ini-
tialization for problem (6), and further yield to better performances.

First, by applying the MMSE receiver filters {V}, and introduc-
ing the weight matrices {S}, we obtain the following problem:

min
{U},{W}
{V},{S}

PU + PR (11)

s.t.
∑
k∈K

[
tr
(
SkE

MMSE
k

)
− log2det(Sk)

]
+ r0 ≤ 0.

If we update the decoding matrices {V} and the weight matrices
{S} by (5) and (7), respectively, we can show that (10) and (11)
have the same KKT points [2]. Fixing the other variables, the relay
AF matrix Wr is updated by the following subproblem:

min
x∈CL2

r×1
xHB2x

s.t. xHB3x+ bHx+ xHb+ c ≤ 0, (12)
where x = vec(Wr), B3 = Ar ⊗ (

∑
k∈K V̄H

krSkV̄kr), c =∑
k∈K

{
tr
[
(VkSkV

H
k )

(∑
l̸=r,l∈R σ2

rH̄klH̄
H
kl+

∑
q∈K Tr

kq(T
r
kq)

H

+η2
kINk

)
−SkV

H
k Tr

kq−Sk(T
r
kq)

HVk+Sk

]
−log2det(Sk)

}
+r0

and Tr
kq =

∑
l̸=r,l∈R HklWlGlqUq; Ar , B2 and b are defined

under problem (8). Similarly, the precoding matrix Uk is updated
by the subproblem below:

min
x∈CNkdk×1

xHL2x

s.t. xHL1x+ lHx+ xH l+ e ≤ 0, (13)
where x = vec(Uk), L1 =

∑
q∈K JH

qkSqJqk, L2 = IMk +∑
r∈R W̄H

rkW̄rk, l = JH
kkSk and e = r0−

∑
q ̸=k,q∈K(SqV

H
q Tqq+

SqT
H
qqVq)+

∑
q∈K

{
tr
[
(VqSqV

H
q )(η2

qINq+
∑

p̸=k,p∈K TqpT
H
qp+∑

r∈R σ2
rH̄qrH̄

H
qr)+Sq

]
− log2det(Sq)

}
. As B3 and L1 are both

positive definite, subproblems (12) and (13) can be transformed into
equivalent problems similar to (8), and we apply the same method to
solve them optimally. To save computational cost, we only update
all the variables in problem (11) for once, and then use them as the
initialization of problem (6).

3.4. Algorithmic framework

Combining the above three subsections, we summarize the algorithm
to tackle the GEE maximization problem (2) as Algorithm 1.

Input : Randomly generated {U} and {W}
Output: {U}, {V}, {W} and {S}
1. Calculate {V} and {S} according to (5) and (7),
respectively;
2. Update Wr by solving (12), for all r ∈ R;
3. Update Uk by solving (13), for all k ∈ K;
repeat

1. Update Vk and Sk according to (5) and (7),
respectively, for all for all k ∈ K;
2. Update Wr by solving (8), for all r ∈ R;
3. Update Uk by solving (9), for all k ∈ K;
4. Update the parameter C according to (4);

until convergence;

Algorithm 1: GEE Algorithm

Proposition 1 In Algorithm 1, the achieved GEE converges.

Proof : In each iteration, each subproblem is solved optimally. Thus
the objective function of (6) and (3) reduces. Let {X} represent
the set of the iterative points {{U}, {V}, {W}, {S}}, and define
the objective function of (3) is f({X};C). Suppose {Xi} are the
feasible points achieved from the ith iteration. Then the expression
of parameter C used in the ith iteration as well as the GEE achieved
in the (i− 1)th iteration is:

Ci = GEEi−1 =
Rsum({Xi−1})
Psum({Xi−1}) .

Since in the ith iteration the objective function of (3) reduces, it
holds that
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f({Xi};Ci)=CiPsum({Xi})−Rsum({Xi})≤f({Xi−1};Ci)=0,

Then GEEi = Rsum({Xi})
Psum({Xi}) ≥ Ci = GEEi−1. Thus the achieved

GEE monotonically increases and converges. �

4. NUMERICAL SIMULATIONS

In this section, we evaluate the performance of the proposed
algorithm by numerical tests. Each element of the channel matrices
Grk is the product of a zero-mean, unit variance Gaussian random
variable multiplying the coefficient PL(r, k) = PL0(

s(r,k)
s0

)4, which
accounts for the propagation pathloss. Here PL0 is the free-space
attenuation at the distance s0 = 100 meters with a carrier frequency
of 1800 MHz, and s(r, k) is the distance between Transmitter k and
Relay r, which is randomly generated in between [100, 500] meters.
The channel matrices Hkr are generated in the same way, for all
k ∈ K and r ∈ R. The total circuit power Pc = 10dBm. The noise
variances σ2

r = µ2
k = σ2 = FN0W , with the receiver noise figure

F = 3dB, the receive power spectral density N0 = −174dBm/Hz
and the communication bandwidth W = 180KHz.

In Algorithm 1, r0 is set in the following way. First we randomly
generate the initial variables and scale them to satisfy the constraints
(2b) and (2c), and calculate the corresponding sum rate value R0.
Then we let r0 = 0.1R0. Thus problem (10) is always feasible. For
each plotted point in the figures, 100 random realizations of different
channel coefficients are generated to show the average performance.

First, we compare our algorithm with the cooperative GEE al-
gorithm proposed in [9]. The latter algorithm serves for one-relay
networks. It applies the IN technique to obtain the relay AF matrix.
The (2×2, 1)K+161 network is considered 1. The maximum trans-
mit power for each transmitter and the relay are 0dBW and 10dBW,
respectively. With the number of user pairs, K, varying from 2 to
10, the curves representing the achieved GEE of the two algorithms
are plotted in Fig. 1. Notice that the GEE definition in this paper is
different from [9], where the latter omits the relay transmit power.
Because our algorithm considers the transmit power for both users
and relays, it achieves much higher GEE than [9]. The achieved GEE
of our proposed algorithm increases with the increment of K. This
is reasonable, because the relay is better utilized when the number
of user pairs increases.

Second, our algorithm is applied to the (3×3, 2)3+33 network.
The maximum transmit power of each relay is 5dBW. We compare
our algorithm with the sum rate maximization algorithm [2]. Both
algorithms use the WMMSE technique to reformulate the problems.
The achieved GEE and sum rate of both algorithms with respect to
different pU are shown in Fig. 2, where pU is the maximum trans-
mit power of each transmitter. Compared to the algorithm in [2],
which aims to maximize the sum rate directly, our algorithm signifi-
cantly improves the achieved GEE, and achieves moderate sum rate.
When pU increases, although the achieved sum rate of our algorith-
m increases, the achieved GEE reduces eventually. It saves much
resources by solving the GEE problem, which addresses the green
communication challenge in 5G and beyond networks.

The performances of our algorithm show that our algorithm is
effective to tackle the GEE problems, and that our deterministic ini-
tialization works well.

1Denote (N × M,d)K + LR as the network with K user pairs and R
relays, where each transmitter, each receiver and each relay have M , N and
L antennas, respectively, and each user pair transmits d data streams.
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Fig. 1 Achieved GEE for the (2× 2, 1)K + 161 network
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Fig. 2 Achieved GEE and sum rate for the (3× 3, 2)3 +33 network

5. CONCLUSION

For the general relay-assisted MIMO interference network, we set
up a model to maximize the global energy efficiency of the network,
with the individual user and individual relay power constraints. We
proposed an algorithm to solve the problem by the following ap-
proaches: first, the fractional optimization technique was applied to
reformulate the fractional objective function; second, we introduced
the MSE receiver filter and transformed the sum rate expression
as the weighted MSE; third, the alternating minimization method
was applied, and the problem was simplified to several convex QC-
QP subproblems; fourth, we introduced an auxiliary power mini-
mization problem to provide good initializations. Simulation results
show that our proposed algorithm achieves high GEE in different
scenarios, and the deterministic initialization technique is efficient.
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