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Abstract—In this paper, we consider a cognitive radio system,

consisting of a primary user (PU), a secondary user (SU) trans-

mitter, and a SU receiver. The SUs are equipped with directional

antennas. The SU transmitter first performs spectrum sensing

(with errors) and then transmits data. We assume the SU and

PU can coexist and the SU transmits at two power levels,

according to the result of spectrum sensing (i.e., whether the

spectrum is sensed idle or busy). We establish a lower bound

on the ergodic capacity of the channel between SU transmitter

and receiver, and study how spectrum sensing errors affect

the bound. Furthermore, we explore the optimal SU transmit

power levels and the optimal directions of SU transmit and

receive antennas, such that the lower bound is maximized,

subject to average transmit power and average interference

power constraints. Through numerical simulations, we show

that (compared with the case when the SUs use omni-directional

antennas) directional antennas can significantly improve the

lower bound in the presence of spectrum sensing errors, subject

to the constraints.

Index Terms—capacity maximization, cognitive radio, direc-

tional antenna, imperfect spectrum sensing.

I. INTRODUCTION

The communication paradigm of cognitive radios can alle-

viate spectrum scarcity problem, via allowing an unlicensed

(cognitive or secondary) user (SU) to access the under-

utilized licensed bands opportunistically, in such a way that

its imposed interference on the licensed (primary) users (PUs)

does not exceed the maximum allowed interference power

level [1]. There is a rich collection of elegant results on

optimizing transmission strategies for opportunistic spectrum

access of SUs, in the presence of a PU activities [2]– [8].

The majority of these works assume the SUs are equipped

with omni-directional antennas [2]–[8] and they transmit data

only when the spectrum is sensed idle. Another commonly

adopted assumption is that the result of spectrum sensing is

perfect [4] (i.e., when the SU senses the spectrum is (not)

occupied by the PU and is busy (idle), the spectrum is truly

busy (idle)). However, all spectrum sensing methods (e.g.,

matched filter detection, energy detection) are prone to errors,

quantified in terms of false alarm and detection probabilities,

due to several sources of uncertainties including noise.

In this work, we assume the SUs are equipped with

directional antennas. The directional antennas can identify

and enable transmission and reception across spatial domain

[9]–[12] and further increase spectrum utilization, compared

with omni-directional antennas. Also, we assume the SUs

and PU can coexist and the SU can adapt its transmission

(a) Our cognitive radio system with
directional antennas.
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Fig. 1: Our system model and antenna gain

power, according to the result of spectrum sensing (i.e.,

whether the spectrum is sensed idle or busy). We study how

spectrum sensing errors affect the ergodic capacity of the

channel between SU transmitter and receiver. Furthermore,

we explore the optimal SU transmit power and optimal

orientations of SU transmit and receive antennas, such that

the channel capacity lower bound is maximized, subject

to average transmit power and average interference power

constraints. To the best of our knowledge, this is the first

work that combines the notions of directional antennas and

imperfect spectrum sensing for cognitive radio systems.

II. SYSTEM MODEL

Fig. 1a depicts the cognitive radio system under consider-

ation. The system consists of a PU, a SU transmitter (SUtx)

and a SU receiver (SUrx). Suppose the SUs are equipped

with steerable directional antennas and the main-lobes of

SUtx and SUrx in their local coordination are centered on

the angles φt and φr, respectively. The directions of PU and

SUrx with respect to SUtx in azimuth plane are denoted by θp
and θ, receptively. The direction of PU with respect to SUrx

is denoted by θ′p. We assume the locations of PU and SUs

are known and hence θp, θ and θ′p are known. The angles φt
and φr, however, are unknown and will be optimized.

A. Spectrum Sensing

We formulate the spectrum sensing problem at the SUtx

as a binary hypothesis testing problem, where H1 denotes

that the spectrum is occupied by the PU and thus is truly

busy, and H0 indicates the spectrum is not occupied by

the PU and hence is truly idle. Let π1 = Pr{H1} and
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π0 = Pr{H0}, respectively, represent the probabilities that

the spectrum is truly busy and truly idle. Let Ĥ1 and Ĥ0,

respectively, denote that the result of spectrum sensing is

busy and idle. The accuracy and reliability of any spectrum

sensing method can be characterized in terms of false alarm

and detection probabilities, defined as Pf = Pr{Ĥ1|H0}
and Pd = Pr{Ĥ1|H1}. Clearly, Pr{Ĥ0|H1} = 1−Pd and

Pr{Ĥ0|H0} = 1−Pf . Let π̂1 = Pr{Ĥ1} and π̂0 = Pr{Ĥ0},

respectively, show the probabilities that the spectrum is

sensed busy and idle. It is easy to verify π̂1 =π0Pf + π1Pd

and π̂0=π0(1−Pf ) + π1(1−Pd). In this work, we assume

π0, Pf , Pd are known. Also, when the spectrum is truly

busy, the PU transmission power level is σ2
p, although SUtx is

unaware of this value. Transmit power level of SUtx depends

on the result of spectrum sensing. When the spectrum is

sensed idle and busy, SUtx uses transmit power P (0) and

P (1), respectively.

B. Data Communication Channel

Let sc[m] denote the discrete-time symbol transmitted

by SUtx and r[m] represent the corresponding discrete-

time signal received by SUrx. We assume a block trans-

mission/reception model where the SUs transmit and receive

several consecutive blocks of M symbols. We assume that

during each block we have the following relationship

r[m]=hstsr
√

G(θ, φt, φr)sc[m]+n[m], for m = 1, ...,M

where G(θ, φt, φr) =A(φt−θ)A(φr−π−θ) is the product

of SUtx and SUrx antennas’ gain. The term hstsr is the

fading coefficient between SUtx and SUrx. The term n[m]
is the additive noise at SUrx and is modeled as Gaussian

n[m]∼N(0, σ2
n). The transmitted symbols sc[m] are digitally

modulated signals and have the average power P (0) or P (1)

when the spectrum is sensed idle or busy, respectively. We

model the antenna gain A(φ) as a function of direction φ as

A(φ) = A1+A0 exp
(

−B
(

φ
φ3dB

)2)
[11] where φ3dB is the

3dB beam-width of antenna, B = ln(2), A1 and A0 are two

constant parameters and A1 is the minimum antenna gain.

This model is an approximation of a real antenna pattern

used in [11], [12]. In Fig. 1b the antenna pattern is depicted

for A1 = 1, A0 = 9 and φ3dB = 30°, 45°. Let dpst , dpsr and

dstsr be the distances between PU and SUtx, PU and SUrx,

and SUtx and SUrx, respectively. All the fading coefficients

include path loss and have Rayleigh distribution with variance

σ2
h = (d0

d
)ν , where d0 is the reference distance, d is the

distance between users (SU or PU), and ν is the path loss

exponent.

III. ERGODIC CAPACITY MAXIMIZATION

we first characterize the ergodic capacity of the channel

between SUtx and SUrx, incorporating the fact that the result

of spectrum sensing is imperfect, in terms of four optimiza-

tion parameters: the antenna angles φt, φr and transmit power

levels P (0) and P (1). Next, we study optimal φt, φr, P (0) and

P (1), such that the channel capacity is maximized, subject to

average transmit power constraint and average interference

power constraint. For the clairvoyant scenario when spectrum

sensing is perfect the maximum rate that the channel can

support is C = E {c0,0 + c1,1}, where

c0,0 = log2

(

1 +
|hstsr |

2 G(θ, φt, φr) P
(0)

σ2
n

)

, (1)

c1,1 = log2

(

1 +
|hstsr |

2 G(θ, φt, φr) P
(1)

σ2
n + σ2

p |hpsr |
2 A(φr − θ′p)

)

. (2)

E{.} is the expectation operator and the expectation is taken

with respect to random fading coefficients. The terms c0,0
and c1,1 are channel capacities when the spectrum is idle

and busy, respectively and hpsr is the fading coefficient from

PU to SUrx. The term σ2
p|hpsr |

2A(φr − θ′p) in (2) captures

the interference on SUrx due to PU activities. However, when

spectrum sensing is imperfect, depending on the true status of

the PU and the spectrum sensing result, two extra terms c0,1
and c1,0 would be added to the capacity expression where

c0,1 = log2

(

1 +
|hstsr |

2 G(θ, φt, φr) P
(1)

σ2
n

)

, (3)

c1,0 = log2

(

1 +
|hstsr |

2 G(θ, φt, φr) P
(0)

σ2
n + σ2

p |hpsr |
2 A(φr − θ′p)

)

, (4)

and ci,j , for i, j ∈ {0, 1} is instantaneous capacity corre-

sponding to Hi and Ĥj with the corresponding probability

Pr{Hi, Ĥj}. Thus, the ergodic capacity can be written as

C = E {α0 c0,0 + β0 c1,0 + α1 c0,1 + β1 c1,1} where

α0=Pr{H0, Ĥ0}=π0(1−Pf ), α1=Pr{H0, Ĥ1}=π0Pf ,

β0=Pr{H1, Ĥ0}=π1(1− Pd), β1=Pr{H1, Ĥ1}=π1Pd.

Let Īav denote the maximum allowed interference power

level. To satisfy the average interference power constraint,

we have

E

{[

β0 P
(0) + β1 P

(1)
]

|hstp|
2 A(φt − θp)

}

≤ Īav. (5)

Let P̄av indicate the maximum average transmit power of

SUtx. To satisfy the average transmit power constraint, we

find

π̂0 P
(0) + π̂1 P

(1) ≤ P̄av. (6)

Since SUtx is unaware of σ2
p value, we lump the effects of

PU interference on SUrx in (3) and (4) and the additive noise

at SUrx into one Gaussian noise term with power σ2 [4], [8].

Consequently, we can rewrite c00, c10, c01 and c11 as

c0,0 = c1,0 = log2

(

1 +
|hstsr |

2 G(θ, φt, φr) P
(0)

σ2

)

, (7)

c0,1 = c1,1 = log2

(

1 +
|hstsr |

2 G(θ, φt, φr) P
(1)

σ2

)

, (8)

and C reduces to C = E
{

π̂0 c0,0 + π̂1 c0,1
}

. Next, we find

E{c0,0} and E{c0,1}. If random variable x has a exponential

distribution with parameter λ, we have E
{

ln
(

1 + ρx
)}

=

−e
λ
ρ Ei

(

−λ
ρ

)

where Ei(−z) = −
∫∞

z
e−t t−1dt [13]. In our
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(a) when |θp − θ| > ψp (b) when |θp − θ| < ψp

Fig. 2: Illustration of φ
opt
t for 0 < Z ≤ 1

problem |hi,j |
2 has an exponential distribution with parame-

ter λi,j=(1− π
4 )/σ

2
hi,j

, where i and j can be SUtx, SUrx or

PU. Thus, we can write E

{

ln
(

1 +
|hstsr

|2 GP (0)

σ2

)}

=

−e
σ2

aP (0) Ei
(

−σ2

aP (0)

)

where G,G(θ, φt, φr) and a=G/λstsr .

Since the analytical maximization of the capacity is infea-

sible, instead, we establish a lower bound on the capacity,

denoted as CLB, and maximize CLB. Using the inequality
1
2 ln

(

1 + 2
x

)

<−ex Ei(−x)< ln
(

1 + 1
x

)

for x>0 [14] we

can write E
{

ln
(

1+
|hstsr

|2 GP (0)

σ2

)}

> 1
2 ln

(

1+ 2aP (0)

σ2

)

and

obtain

CLB =
π̂0
2

log2

(

1+
2aP (0)

σ2

)

+
π̂1
2

log2

(

1+
2aP (1)

σ2

)

. (9)

In the following, we address maximization of CLB with

respect to four optimization parameters φt, φr, P (0), P (1),

subject to two constraints in (5) and (6). Let φopt
t , φopt

r , P
(0)
opt ,

P
(1)
opt be the optimal solutions. This optimization problem is

convex with respect to φr, P (0), P (1), but not with respect to

φt. Since φt lies in interval [0, 2π], φopt
t can be obtained using

one-dimensional exhaustive search, i.e., we can consider an

initial value for φt and solve the problem with respect to φr,

P (0), P (1). Then, we find the value of φt which maximizes

the CLB [15]. Given φt, the constrained maximization of

CLB with respect to φr, P (0), P (1) can be solved using the

Lagrange multiplier method. By applying the Karush-Kuhn-

Tucker (KKT) conditions, the optimum value for φr can be

obtained as φopt
r =π + θ. We define

b0 = A(φt − θp) β0/λstp, b1 = A(φt − θp) β1/λstp
Σ = b1π̂0 − b0π̂1, Υ = b1π̂

2
0 + b0π̂

2
1

Ψ = −b1P̄av + π̂1Īav, Π = b0P̄av − π̂0Īav.

The parameter Σ can be simplified as Σ = π0π1

λstp
(Pd −

Pf )A(φt−θp). Assuming Pd ≫ Pf we conclude that Σ > 0.

Solving the KKT conditions with regard to P (0) and P (1),

we obtain the optimal transmit power under Ĥ0 and Ĥ1

P (0) =















Īav

b0
, ∆2<0, Π≥0, [case I ]

P̄av, ∆0≤0, [case II]
∆1

2ab0
, ∆3≤0, ∆2>0, [case III]

−Ψ

Σ , ∆3>0, ∆0>0, Π<0, Ψ<0 [case IV]
(10)

P (1) =















0, ∆2<0, Π≥0, [case I ]
P̄av, ∆0≤0, [case II]
∆2

2ab1
, ∆3≤0, ∆2>0, [case III]

−Π

Σ , ∆3>0, ∆0>0, Π<0, Ψ<0 [case IV]
(11)

where ∆0=(b0+b1)P̄av−Īav, ∆1=2aπ̂0Īav+σ
2Σ and

∆2=2aπ̂1Īav−σ
2Σ

∆3=σ
2Σ2+2aΥĪav−2aP̄avb0b1.

In order to reduce the computational complexity of one-

dimensional exhaustive search for finding φopt
t in the in-

terval [0, 2π], in the following we find a narrower interval

to which φopt
t belongs to, i.e., we find φL

t and φU
t such

that φopt
t ∈

[

φL
t , φ

U
t

]

. The maximum imposed interference

on PU would occur when SUtx always transmits data with

maximum allowable transmit power P (0) = P (1) = P̄av

without considering the spectrum sensing result. In this case,

considering (5) we obtain A(φt − θp) ≤
λstp

Īav

π1P̄av
. We define

Z = (λstp Īav)/(π1A0P̄av) − A1/A0. From (5) we have

exp
(

−B
(φt−θp

φ3dB

)2)
≤Z. If Z>1, it means that PU can tolerate

an interference power that is larger than the interference

power imposed by SUtx and (5) holds true for every value

of φt and it is obvious that φopt
t = θ maximizes CLB. For

0<Z≤1, we define ψp=φ3dB

√

−1
B

ln(Z) and consider two

cases. When |θp − θ|>ψp, φopt
t has to lie outside the shaded

area shown in Fig. 2a. The unshaded area in Fig. 2a includes

the line of sight (LOS) between SUtx and SUrx and it is clear

that φopt
t = θ. When and |θp − θ| < ψp, which is shown in

Fig. 2b, φopt
t lies in the following interval
{

φopt
t ∈ [θp − ψp, θ] , if θp > θ

φopt
t ∈ [θ, θp + ψp] , if θp < θ

(12)

If Z ≤ 0, we cannot find a narrower interval and the entire

interval [0, 2π] should be considered in one-dimensional

exhaustive search. The following table summarizes our pro-

posed approach to find the optimal solutions φopt
t , φopt

r , P
(0)
opt

and P
(1)
opt .

1) φopt
r = π + θ,

2) Calculate Z,

3) Calculate the interval which contains φopt
t ,

• Case a. If Z > 1 or if Z < 1 and |θp − θ|> ψp, then

φopt
t = θ, i.e., no further optimization over φt is needed,

• Case b. If 0<Z<1 and |θp − θ|<ψp, then φopt
t lies in

the interval mentioned in (12),

• Case c. If Z≤0, then φopt
t lies in the interval [0, 2π],

4) For case a, calculate P
(0)
opt , P

(1)
opt using (10) and (11). For

cases b and c, given a φt value within the obtained interval,

calculate P (0), P (1) using (10) and (11),

5) For cases b and c, substitute P (0), P (1), φt, φ
opt
r in (9),

6)
[

φopt
t , P

(0)
opt , P

(1)
opt

]

= argmax
{

CLB
}

.
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IV. NUMERICAL RESULTS AND CONCLUSION

Using Matlab simulations, we illustrate how directional

antennas can improve the channel capacity when considering

imperfect spectrum sensing. Assume σ2 = 1, φ3dB = 45°,

A0 = 9, A1 = 1 and π1 = 0.3. Let ν = 2, dpst = 4 m and

dstsr =2 m. Suppose CDirc
opt denote CLB in (9), evaluated at the

optimal solutions φopt
t , φopt

r , P
(0)
opt and P

(1)
opt . We compare CDirc

opt

with the lower bound on the channel capacity when SUtx and

SUrx have omni-directional antennas with the antenna gain

A(φ)=10 for all φ, and only transmit powers P (0) and P (1)

are optimized subject to the transmit power and interference

constraints, which we denote as COmni
opt . Furthermore, to

quantify the advantage of optimizing the angles of SUtx and

SUrx directional antennas, we compare CDirc
opt with CLB in

(9), evaluated at φt = θ, φr = π+θ (the antennas of SUtx

and SUrx are exactly pointed at each other), P (0) and P (1)

obtained from (10) and (11), which we denote as CLOS
opt .

For fair comparisons, we consider a fixed spectrum sensing

method with Pd=0.9 and Pf =0.1. Note that P
(0)
opt and P

(1)
opt

are constant for all θ when SUs use omni-directional antenna

and COmni
opt is independent of θ.
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Fig. 3: Optimal solutions versus θ.

Fig. 3a to Fig. 3c present the optimal φopt
t , P

(0)
opt and P

(1)
opt

versus angle θ, when θp = 90°, P̄av = 6, 10, 15, 18 dB and

Īav =0 dB. Fig. 3a shows that as θ increases, φopt
t increases

and approaches to θp. When P̄av = 6 dB, for θ ≤ 20° the

interference which is imposed on the PU is less than Īav

and SUtx transmits by it’s maximum allowable power, i.e.,

P (0) = P (1) = P̄av and φopt
t =θ

(

case II in equations (10) and

(11)
)

. As θ increases beyond 20°, case IV happens. Since b0
and b1 increase equally and P (0)=(P̄av−

π̂1

b1
Īav)/(π̂0−

b0
b1
π̂1)

we can conclude that P
(0)
opt increases. With the same argument
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Fig. 4: Behavior of three capacity ratios versus θ.

we conclude that P
(1)
opt decreases. When P̄av=10, 15, 18 dB,

for all θ ∈ [0°, 80°], we have ∆0 ≥ 0. When P̄av = 10 dB,

case IV in (10) and (11) happens. Thus, as θ increases, b0 and

b1 increase. As a result, P
(0)
opt increases, while P

(1)
opt decreases.

When P̄av =15 dB, for θ≤ 42°, case IV happens. However,

for θ>42° case III happens. Since in case III b0 and b1 are in

the denominator, both P
(0)
opt and P

(1)
opt decrease by increasing

θ. When P̄av =18 dB, for all θ ∈ [0°, 80°] case III happens

and P
(0)
opt and P

(1)
opt decrease as θ increases. Fig. 3d shows the

CDirc
opt versus P̄av for different values of Īav. We observe that

by increasing P̄av or Īav, CDirc
opt increases.

We define three capacity ratios ΓD2O=C
Dirc
opt /C

Omni
opt , ΓL2O=

CLOS
opt /C

Omni
opt and ΓD2L = CDirc

opt /C
LOS
opt . Fig. 4a plot ΓD2O and

ΓL2O versus θ when θp=0°, P̄av =15 dB and Īav =0 dB for

φ3dB=25°, 45°. It can be seen that when θ=0, CDirc
opt ≈CLOS

opt

and as |θ − θp| increases, CDirc
opt > CLOS

opt . We observe that

CDirc
opt > CLOS

opt for |θ − θp| < 135° and for |θ − θp| > 135°,

CDirc
opt ≈CLOS

opt when φ3dB =45°. Since COmni
opt is independent

of θ, by comparing ΓD2O to ΓL2O in Fig. 4a, we can see

that the trend of the curves in two figures are different. In

fact, the shape of the curves for ΓD2O is similar to letter V.

However, this shape is similar to letter U for ΓL2O. It means

that ΓD2O increases sharper (has a larger slope) with respect

to θ, compared with ΓL2O. This effect is also shown in Fig. 4b

where the performance gain of CDirc
opt against CLOS

opt is plotted.

Also, in Fig. 4a we see that for a fixed value of θ, as the

beam-width decreases, the capacity gain increases. In other

words, as half power beam-width decreases, the directional

antenna can cancel more interference power imposed on or by

the PU. Thus, the optimal capacity can reach to its maximum

value for smaller |θ − θp|.
In summary, we considered a cognitive radio system,

where the SUs are equipped with directional antennas and

spectrum sensing is imperfect. We explored the optimal

SU transmit power levels and the optimal directions of

SU antennas, such that the channel capacity lower bound

is maximized, subject to average transmit power and aver-

age interference power constraints. Through simulations, we

showed that directional antennas significantly enhance the

lower bound.
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