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Abstract—In this work, the inter-dependency of TCM signals is
studied. Using this inter-dependency, correlation-based detectors
are proposed for spectrum sensing of TCM signals in white
Gaussian noise. In particular, a constant false alarm rate (CFAR)
detector is presented and its performance is evaluated using
simulations. We also describe an application of our detector for
the classification of uncoded modulation systems vs. their TCM
counterparts and present numerical results on their performance.

Index Terms—Spectrum Sensing, Cognitive Radio, Trellis
Coded Modulation, Correlation, Signal Detection

I. INTRODUCTION

Opportunistic spectrum access (OSA) has been proposed for
alleviating the overcrowding of the radio spectrum [1], [2].
Spectrum sensing is a key function in OSA which allows a
cognitive radio (CR) to identify and utilize an unused licensed
spectrum without undue interference to the primary users [3].
After detecting the spectral white space a frequency agile CR
can adjust its transmitter parameters including its frequency,
modulation, coding, power, etc., in order to make best use of
the available spectrum. Several techniques have been proposed
for spectrum sensing in recent years [4]–[7], including energy
detectors, [8], [9], cyclostationary detectors, [10], [11], and
autocorrelation-based detectors, [12]–[14].

Correlation-based techniques are commonly used in vari-
ous areas of wireless communication. In spectrum sensing,
correlation-based detectors can be designed to have the CFAR
(constant false alarm rate) property [14]–[16]. For such detec-
tors the false alarm probability does not depend on the noise
power. Therefore a Neyman Pearson type detection method
can be easily implemented whereby the decision threshold
is simply computed from the desired value of false alarm
probability.

Trellis coded modulation (TCM) is a popular scheme for
information transmission over bandlimited channels which
achieves good power and bandwidth efficiency [17]. Since
its inception, TCM has been one of the most active areas
of research in communications and has been proposed for
many wired and wireless communication systems, [18], [19],
including video and TV broadcasting [20], [21]. A recent
application of TCM involves millimeter-wave radio links that
provide Gigabit wireless back-haul to the small-cells in the
new generation of cellular networks (5G). [22], [23].

Our goal in this paper is to develop a correlation-based
detector for TCM-type signals. Towards this end we first
investigate the inter-dependency properties of TCM symbols.
It is clear that the presence of a trellis structure imposes
such an inter-dependency among TCM symbols. However,
it is shown that, for most TCM structures of interest, an
autocorrelation-based detector will not be effective due to the
fact that, surprisingly, any two symbols from the TCM code
are independent. However, it is shown that ν + 1 consecutive
symbols, where ν is the code’s constraint length, are depen-
dent. Using this property we introduce three different decision
statistics which are derived from one another with improved
properties. The third scheme for which we present simulation
results is a CFAR detector. We also describe an application of
our approach for the classification of an uncoded modulation
scheme vs its TCM counterpart.

In Section II we study the correlation properties of TCM
signals. In Section III we describe our decision statistics
for spectrum sensing of 8-PSK TCM schemes. Section IV
describes the application of our approach to modulation clas-
sification. Numerical results are presented in Section V and
conclusions are drawn in Section VI.

II. CORRELATION PROPERTIES OF TCM SIGNALS

Trellis coded modulation (TCM) is a combined coding and
modulation technique suitable for transmission over bandlim-
ited channels. The main attraction of TCM stems from the
fact that it achieves significant gains in SNR over the uncoded
systems without the concomitant bandwidth expansion of
traditional coded modulation systems [17]. A block diagram
of a TCM encoder is shown in Fig. 1. From the set of
m information bits, m̄ bits are encoded using a rate m̄

m̄+1
convolutional code with constraint length ν. The m̄ + 1 bits
are then used to select a subset (containing 2m−m̄ signals) of a
redundant M = 2m+1-ary signal set S = {s0, s1, · · · , sM−1}.
The remaining m − m̄ uncoded bits are used to select a
signal from the subset for transmission. The selection of
the subsets is performed by set partitioning which increases
the minimum Euclidean distance of the signals in the subset
with each partition [17]. The convolutional encoder imposes
a trellis structure on the sequence of transmitted symbols
which describes the dependency of a transmitted symbol on
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previously transmitted symbols. This dependency is used to
increase the Euclidean distance between distinct sequences of
symbols corresponding to distinct code paths. An example for
the 8-PSK signal constellation is shown in Fig. 2 [24].

Fig. 1: Block diagram of the TCM encoder.

Fig. 2: TCM trellis (ν = 2) and 8-PSK signal constellation.

In this paper we are interested in the inter-dependency
of the transmitted symbols in a TCM system. At the first
glance it may appear that each pair of consecutive symbols
are dependent. This, however, is not true for most trellises
of interest. In particular, let {Xn} denote the sequence of
symbols from the signal constellation which represents a coded
path in the trellis with Xn denoting the (output) symbol
at time n. Also let {Sn} denote the sequence of states of
the trellis with Sn denoting the state at time n. Then any
ν + 1 consecutive symbols Xn−ν+1, Xn−ν+2, · · · , Xn+1 are
dependent. This is due to the fact that, regardless of what the
state at time n−ν is, the symbols Xn−ν+1, Xn−ν+2, · · · , Xn

uniquely identify the state Sn at time n. Now since only 2m

branches emanate from this state, it follows that

P (Xn+1 = sj |Xn−ν+1 = skn−ν+1 , · · · , Xn = skn) =
1

2m−m̄
(1)

where we have assumed that the signals in the constellation
are used with equal frequency [17]. On the other hand,
P (Xn+1 = sj) = 1

2m+1 . This and (1) imply that the symbols
Xn−ν+1, Xn−ν+2, · · · , xn, Xn+1 are dependent. Note that
this property is independent of the signal constellation or the
rule which maps the symbols to the branches of the trellis as
long as in every stage of the trellis the signals are used with
equal frequency [17].

An important question is whether fewer than ν + 1 output
symbols can be dependent. In fact some TCM structures have
the property that k < ν + 1 output symbols are dependent.
For example consider the trellis of Fig. 2. At each stage
the trellis contains 16 branches. Therefore if this trellis is
used with a 16-PSK modulation scheme, then each output

symbol uniquely identifies the next state. Therefore any two
consecutive symbols will be dependent. Such TCM structures,
however, do not have good distance properties and will not be
considered further in this paper.

For the trellis in Figs. 2 with 8-ary PSK, any set of fewer
than ν + 1 symbols are independent such that for any ` ≥ 0,

P (Xn+1 = sj |Xn−` = si) = P (Xn+1 = sj), ∀ i, j. (2)

In other words, any two (consecutive) symbols in a coded
sequence are independent. This implies that RXX(k) =
E[Xn+kX

∗
n] = 0 for k 6= 0. Therefore, for this TCM

structure, autocorrelation-based spectrum sensing techniques
will be ineffective for detecting the presence or absence of
TCM signals in white Gaussian noise. For that purpose at
least three consecutive symbols must be considered.

Although our results can be easily generalized for arbitrary
TCM structures, for concreteness and ease of notation, in the
remainder of this paper we confine our attention to the 8-PSK
TCM scheme of Fig 2.

III. SPECTRUM SENSING FOR 8-PSK TCM
Based on the observation in the previous section a test

statistic can be formed for detection of TCM signals in
white Gaussian noise. Consider the signal r(t) received by
a secondary user in a CR network, where r(t) = ηs(t) +v(t),
and where η = 1 and 0 indicates the presence or absence of the
primary user signal, respectively. We assume that the signal
s(t) is an 8-PSK TCM signal. After down conversion and sam-
pling the received signal samples are given by rn = ηxn+vn,
where xn ∈ S and vn is a complex circular Gaussian random
variable with mean zero and variance 2σ2.

We denote the case of η = i with the hypothesis Hi, i =
0, 1. Our goal is to devise a simple decision statistic based
on the received sequence r = (r0, r1, · · · , rN−1) that can be
used to detect the hypothesis Hη .

A. A binary decision statistic

For the 8-PSK TCM of Fig. 2 we define the following
mappings.

q(x) =

{
+1 if x ∈ {s0, s4, s3, s7}
−1 if x ∈ {s1, s2, s5, s6}

(3)

Q(x) =

{
+1 if x ∈ {s0, s2, s4, s6}
−1 if x ∈ {s1, s3, s5, s7}

(4)

Then it can be verified that for any sequence of coded symbols
{xn} the following holds for any time n.

q(xn−2) Q(xn−1) = q(xn) (5)

To develop a test statistic using (5), we extend the mappings
q and Q to the entire complex plane as depicted in Fig. 3.
We now define the following test statistic using the binary
functions qe(·) and Qe(·).

T1(r) =
1

N − 2

N∑
n=2

tn (6)
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Fig. 3: Extensions of the mappings q and Q.

where tn = qe(rn−2)Qe(rn−1)qe(rn). Our motivation for
(6) is that since the noise is circularly symmetric, in the
absence of the primary signal E(tn|H0) = 0 which implies
that E[T1(r)|H0] = 0. On the other hand, due to (5),
E(tn|H1) = ρ > 0 implying that E[T1(r)|H1] = ρ > 0,
where ρ depends on the SNR. Although T1(r) can be used for
the detection problem at hand, since the value of ρ is small, its
performance under low SNR regime is poor. The difficulty is
due to the hard quantization effect of the mappings qe(·) and
Qe(·). To resolve this problem we introduce a new mapping
in the following.

B. A hyperbolic mapping

Consider the two mappings a(z) = xy and b(z) = xy(x2−
y2) defined on the complex plane where x = <(z) and y =
=(z). A new decision statistic is defined by

T2(r) =
1

N − 2

N∑
n=2

τn (7)

where τn = a(rn−2)b(rn−1)a(rn).
Remark: We would like to note the similarity between tn and
τn. In particular, in the absence of noise, we have tn = 1 and
τn = E4, where E is the energy of the 8-PSK signals.

It is straightforward to show that E[T2(r)|H0] = 0 and
var[T2(r)|H0] = 4σ16

N−2 . Now by the central limit theorem on
weakly dependent sequences,

√
N − 2 T2(r) ∼ N (0, 4σ16).

Therefore, for large N , the probability of false alarm is
approximated by

PF = P (T2(r) > λ|H0) = Q

(
λ
√
N − 2

2σ8

)
. (8)

It can also be shown that E[T2(r)|H1] = E4/16. The variance
of the decision statistic under H1 is more difficult to compute.
Therefore it is difficult to obtain a closed from solution for the
detection probability. However, this variance goes to zero with
N and so PD −→ 1 with N . In the following we present a
third decision statistic which improves upon T2(r).

C. A CFAR decision statistic

Two new mappings α(z) and β(z) are defined on the
complex plane as follows. For z = x + jy = |z|ejθ, let
α(z) = 2xy

|z|2 = sin(2θ) and β(z) = 4xy(x2−y2)
|z|4 = sin(4θ).

The new decision statistic is now defined by

T3(r) =
1

N − 2

N∑
n=2

χn (9)

where

χn = α(rn−2)β(rn−1)α(rn) (10)
= sin(2θn−2) sin(4θn−1) sin(2θn) (11)

and where θi = arg ri. An important feature of this detection
statistic is that it is a constant false alarm rate (CFAR) detector.
This implies that for a given probability of false alarm, PF ,
we can compute the appropriate threshold to implement the
detector. The following results can be easily verified.

E(T3(r) |H0 ) = 0 (12)

V ar(T3(r) |H0) =
1

8(N − 2)
(13)

PF = P (T3(r) > λ | H0) = Q(
√

8(N − 2)λ) (14)

For a given value of PF , the threshold λ can be evaluated

from (14) as λ = Q−1

(
PF√

8(N−2)

)
. This threshold now deter-

mines the detection probability. We do not have a closed form
equation for the detection probability. The results presented in
Section V are obtained from simulation.

IV. APPLICATION TO MODULATION CLASSIFICATION

Here, we illustrate another application of our approach for
classification of TCM signals vs. uncoded modulation signals.
In particular we describe how the decision statistic in III-C
can be applied to distinguish between 8-PSK TCM signals and
uncoded 8-PSK signals. After down conversion and sampling
the received signal, we obtain a sequence r = (r1, r2, · · · , rn),
where rk = xn + vn. Under the hypothesis H1 the sequence
{xn} is a coded sequence of symbols from 8-PSK TCM signal,
and under the hypothesisH2, it is a sequence of independent 8-
PSK symbols. {vn} is an iid sequence of circularly symmetric
Gaussian random variables.

The statistics of T3(r) under hypothesis H1 are the same
as those in Section III-C. Under hypothesis H2 we have
E[T3(r)|H2) = 0. Moreover,

var[T3(r)|H2] =
1

(N − 2)2
×

N∑
k=2

E[sin(2θn−2) sin(4θn−1) sin(2θn))2] (15)

Using the fact that under H2 consecutive symbols are inde-
pendent and the symbols are uniformly distributed on a circle,
after some mathematical manipulations, (15) can be simplified
to get

var[T3(r)|H2] =
1

8(N − 2)
(16)

Therefore, PF is given by (14).
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V. NUMERICAL RESULTS

In this section we present our simulation results on the
performance of the detector described in Section III-C. A
TCM system with an 8-PSK modulation and the trellis of Fig.
2, [24], is used for transmission over AWGN channel. The
received signal is down converted and sampled to obtain a
data sequence of N samples. These samples are used to form
the decision statistic in (9).

Fig. 4 shows the detection probability vs. SNR for a false
alarm probability of PF = .1 for three different values of N .
If a detection probability of PD ≥ 9 is desired, [25], then for
a given value of SNR, the required number of samples can be
determined.

Fig. 4: Detection probability vs. SNR for PF = .1.

Figs. 5 and 6 show the ROC curves for different sample
size, N , at SNR=3 dB and SNR=5 dB, respectively. It can
be seen that to obtain PF ≤ .1 and PD ≥ .9 a large number
of samples required at SNR=3 dB that drops rapidly to a few
hundreds as SNR increases to 5 dB. In Figs. 5 and 6 we also
show the performance of an ideal energy detector (ED) which
knows the level of noise power exactly. It is clear that the ideal
energy detector outperforms the proposed detector even with
a few data samples. However, it is well known that the energy
detector requires knowledge of the noise power and when the
noise power is estimated, the estimation error deteriorates the
performance of this detector, a phenomenon known as “SNR
wall”, [26]. On the other hand the proposed detector is a CFAR
detector and does not require knowledge of the noise power.

In Fig. 7 we show the error probability of the proposed
classifier vs. SNR. It can be seen that for an SNR value of
less than 13 dB, it achieves error probability of less than 1%
with as few as 100 data samples.

VI. CONCLUSION

In this paper we derive the inter-dependency properties of
symbols in a trellis coded modulation scheme. It is show
that if the constraint length of the convolutional encoder is
ν, then for TCM structures with good distance properties,
ν + 1 output symbols are dependent and no fewer than ν + 1

Fig. 5: ROC curve of the CFAR detector for SNR=3 dB.

Fig. 6: ROC curve of the CFAR detector for SNR=5 dB.

symbols will be dependent. We develop decision statistics
based on ν + 1 consecutive symbols for detection of PSK
modulated TCM signals in white Gaussian noise. Simulation
results are provided for detection and false alarm probabilities.
Application of our decision statistic for detection of a TCM
structure vs. uncoded modulation is also discussed.

Fig. 7: Error probability of the proposed classifier vs. SNR.
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