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ABSTRACT

This paper proposes a Bayesian detector for spectrum sensing in
a multi-antenna cognitive radio (CR) network in which no channel
state information (CSI) is available. The Bayesian approach for de-
tection necessitates a prior distribution of the CSI in terms of the
spatial covariance matrix, and unfortunately it is often improper and
cannot be applied directly. We shall introduce the use of the Frac-
tional Bayes Factor (FBF) approach to handle improper prior, which
in turn yields a well-defined Bayes factor as the test statistic for de-
tection. A number of priors of the CSI are examined and a closed-
form expression for the test statistics is derived. The developed
Bayesian detector is compared with those by using the conjugate
priors for both hypotheses and the generalized likelihood ratio test
(GLRT), and it yields considerable improvement in detection perfor-
mance.

Index Terms— Bayesian detection, Fractional Bayes factor,
multi-antenna, prior distribution, spectrum sensing

1. INTRODUCTION

Opportunistic access for cognitive radio (CR) network can provide
an efficient use of the limited spectrum resources and allow inter-
weaving between heterogeneous networks [1]. Essentially, the sec-
ondary user (SU) in a CR network seeks opportunistic access to the
spectral band of a licensed primary network when the primary user
(PU) is idle. Spectrum sensing in the interweave paradigm is an es-
sential component for the design of a CR network [2]. The capabili-
ties of SU to detect the presence of PU can be enhanced significantly
through incorporating multiple antennas at the terminals of SU and
PU [2–14].

Spectrum sensing in the interweave multi-antenna CR requires a
detector that generates a defined test statistic to be compared against
a specific threshold value to attain a reliable belief about the activity
of PU. Such a detector can be separated into the deterministic and
Bayesian categories. For the deterministic category, the test statistic
can be based on energy [3], multivariate cyclostationary [4], eigen-
values of the sample covariance matrix [5–8], or the generalized
likelihood ratio test (GLRT) [9–11]. The first three kinds have lim-
itations as they assume, respectively, the noise power is accurately
known, the PU signal has a format with its cyclic frequency known,
or the PU signal does not have any structure. The GLRT detector
does not guarantee in general optimality for the employed test statis-
tic [15, Ch. 6]. On the other hand, the Bayesian approach avoids
estimating the unknown parameters through introducing prior distri-
butions for them and marginalizes the likelihood function [12–15].
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tion Develpment in Iraq (HCED).

In the Bayesian framework, the Bayes factor is used as the test statis-
tic and it can be considered as the odds of one hypothesis to another
provided by the data. In this work, we shall regard the Bayesian de-
tection for spectrum sensing, where the unknown parameters are the
spatial covariance matrix that represents the channel state informa-
tion (CSI) from PU to SU.

Several approaches have been proposed in the statistics com-
munity for the evaluation of the Bayes factor, please refer to [16]
for a good overview. Obtaining the Bayes factor is not straightfor-
ward, due to the choice of prior, the improper prior behavior and
the integration for marginalization. Indeed, utilizing proper priors
for hypothesis testing is crucial to ensure a well behaved Bayes fac-
tor [16]. The conjugate prior is proper but it often yields inadequate
results for Bayesian detection [12] as indicated in Section 4. In this
paper, we shall introduce the fractional Bayes factor (FBF) approach
to define the Bayes factor for the spectrum sensing problem that can
provide better performance [17, 18].

FBF can work with different priors that can be improper, and it
can transform improper priors into proper ones through the concept
of training samples. Specifically, FBF uses a fraction of the likeli-
hood function to make the priors become proper and the remaining
for hypothesis evaluation. Consequently, it avoids the need in deter-
mining the rather difficult non-informative or objective conventional
priors (CPs) [19]. Furthermore, it is computationally attractive and
does not need averaging over all the possible training data as com-
pared to the intrinsic Bayes factor [20].

In conjunction with the use of FBF, we shall introduce a class of
improper priors for the CSI under the hypothesis that PU is active in
transmitting signal [21]. It includes the Jeffreys’, independence Jef-
freys’ [22], Geisser and Cornfield’s [23], right- and left-Haar mea-
sure, and reference priors [24]. This set of priors has found par-
ticularly desirable in (sparse) Gaussian graphical models [25] and
provided better results but it is not proper. For the hypothesis that
PU is not active, we shall use the conjugate prior for the unknown
noise parameters, which unfortunately becomes improper as the hy-
perparameters go to zero [26]. In either hypothesis, FBF will handle
the improperness of the priors naturally without difficulty.

We would like to outline the contributions as follows. The use of
FBF to produce the Bayes factor with improper priors has not been
explored in signal processing. Indeed, the only available work we
found in the engineering literature on FBF is to use it for associating
proper priors of the unknown parameters [29]. To the best of our
knowledge, the proposed class of improper priors for CR spectrum
sensing is new. Previous attempts in the literature are limited to the
conjugate priors [12] or CPs [27, 28]. Furthermore, we have derived
closed-form expressions for the marginal likelihoods and the FBF
test statistic.

The organization of this paper is as follows. Section 2 formu-
lates the problem and defines the Bayes factor for spectrum sensing.
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Section 3 presents the FBF technique, introduces prior distributions
for the unknown CSI parameters, and determines the expression for
the associated FBF. Section 4 compares the proposed Bayesian de-
tector with the state-of-art detectors and Section 5 concludes the pa-
per.

Notation: Upper-case and lower-case bold-face letters denote
matrices and column vectors. The matrix functions |A|, etr(A), and
Diag(A) denote the determinant, exp(trace), and an operator that
takes the diagonal elements of A to form a diagonal matrix. E[·] and
(·)t denotes the expectation operator and the transpose. Rn×m is
the space of n×m real matrices. N (m,C) represents multivariate
Gaussian distribution with mean m and covariance C.

2. PROBLEM FORMULATION

2.1. Problem Setup

We shall consider spectrum sensing for an interweave CR network
in which SU is able to exploit the spectrum resources of the primary
network whenever PU is not active. Fig. 1 depicts the considered
interweave CR model. We assume PU has l transmit and SU has p
receive antennas. The transmitted signal from PU is xk ∈ Rl×1,
k = 1, · · · , N , where N is the number of samples available for
detection. We shall follow [9–13] and consider xk is Gaussian dis-
tributed with E[xxt] = I. The signal propagates through the channel
represented by the matrix H ∈ Rp×l that is assumed static during
the N sample period and reaches SU. The observed signal at SU is
yk, k = 1, · · · , N . The collections of the transmitted and received
samples form the matrices X

∆
= [x1 · · ·xN ] and Y

∆
= [y1 · · ·yN ].

Spectrum sensing in CR can be casted as a detection problem
that intends to distinguish between the following two hypotheses:

H0 : Y = W, (1a)
H1 : Y = HX + W, (1b)

where W = [w1 · · ·wN ], wk ∈ Rp×1, is the zero-mean additive
white Gaussian noise matrix. The hypotheses H0 and H1 in (1)
correspond to the null (noise) model and to the data model.

It is reasonable to consider the received signal yk is IID. Thus
the detection problem becomes one of choosing between two multi-
variate normal distributions from the observations [2, 11–13].

H0 : yk ∼ N (µ,D), k = 1, · · · , N (2a)
H1 : yk ∼ N (µ,Σ), k = 1, · · · , N (2b)

where µ ∈ Rp×1 is the mean vector, D = E[wwt] is a diagonal
matrix of positive diagonal elements. We do not restrict the diagonal
elements to be identical to account for uncalibrated multi-antenna
receivers [9,12]. Σ ∈ Rp×p is a positive definite matrix that is equal
to Σ = HHt + D.

The CSI for the detection problem (2) is not available and D,
H, and Σ are unknown parameters. In the development follows,
we shall denote the likelihood function for the hypothesis H0 as
f0(Y/µ,D) and that for H1 as f1(Y/µ,Σ).

2.2. Bayesian Detection

Let π0(µ,D) and π1(µ,Σ) be the objective (non-informative) prior
distributions for the unknown parameters (µ,D) and (µ,Σ). The
marginal likelihood functions for the hypotheses are

m0(Y)=

∫
f0(Y/µ,D)π0(µ,D)dµdD , (3a)

m1(Y)=

∫
f1(Y/µ,Σ)π1(µ,Σ)dµdΣ . (3b)
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Fig. 1. An interweave CR model between PU and SU, where each
user has multiple antennas and the channel H is not known.

Under the Bayesian framework, the test statistic to discriminate be-
tween the two hypotheses is the Bayes factor defined as

B10 =
m1(Y)

m0(Y)
. (4)

Given a threshold value γ, the probability of detection and the
probability of false alarm in favor of H1 are

PD = P(B10 ≥ γ/H1) (5)
PFA = P(B10 ≥ γ/H0) , (6)

where P(A) denotes the probability of the event A.
The Bayes factor (4) needs to be evaluated without any unspeci-

fied constants [16] so that the integrations in both (3a) and (3b) yield
certain values. This requires that the prior πi(·, ·), i = 0, 1, must be
proper, i.e,

∫
dπi(·, ·) = 1.

Determining proper CPs can be a challenging task [19]. Further-
more, a rich set of priors is available from Bayesian inferences and
predictions and nevertheless they are improper. Rather than evalu-
ating (4), we shall replace it by the FBF for detection. One direct
benefit is the improperness of the priors can be easily taken care of.

The FBF for spectrum sensing that we are going to develop is
for unknown parameters that are real. Extension to the complex pa-
rameters is for further study.

3. PROPOSED FBF DETECTOR

3.1. FBF

FBF was first introduced by O’Hagan [17] in 1995. It applies a frac-
tion b, 0 < b < 1, of the likelihood fi(·), i = 0, 1, to handle the
improper behaviors of the priors and then uses the remaining 1 − b
fraction of the likelihood to decide between the hypotheses. The
FBF, BF

10, is defined as [16, 17]

BF
10 = B10

∫
fb

0 (Y/µ,D)π0(µ,D)dµdD∫
fb

1 (Y/µ,Ψ)π1(µ,Ψ)dµdΨ
(7)

where B10 is given in (4). The ratio term on the right of B10 has the
purpose of cancelling out any unspecified constants in B10. Thus,
the FBF BF

10 becomes a well defined numeric value.
In (7), one common choice of b is m/N , where m is the min-

imal training sample size [20]. Other possible values for b are
max(m,

√
N)/N and max(m, logN)/N [17]. At the end of Sec-

tion 3.4, we shall provide a requirement of b for the proposed CR
detector.

Moreno [18] has shown that the FBF method can produce frac-
tional priors, meaning that we can consider FBF as a method of gen-
erating suitable CP for hypotheses or models discrimination. The
sufficient conditions for the existence of the prior are that b = m/N
and the models are nested.

We shall introduce next some priors for D and Σ and use them
to determine BF

10 for the hypothesis testing problem (1).
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3.2. Prior Distribution under H0

For calculation tractability, we shall use the following conjugate
proper prior for (µ,D)

π0(µ,D)
indep∼

p∏
j=1

IG (h/2, δjj/2) (8a)

=

p∏
j=1

(δjj/2)h/2

Γ(h/2)
d
−( h

2
+1)

jj exp

(
− δjj

2djj

)
(8b)

=
|∆|h/2

2hp/2Γp(h/2)
|D|−( h

2
+1)etr

(
−1

2
∆D−1

)
(8c)

where IG(·, ·) stands for the inverse Gamma distribution, h/2 and
δjj/2, j = 1, · · · , p are the shape and scale parameters of IG(·, ·)
and Γ(·) denotes the gamma function. The matrix ∆ is diagonal
formed by having δjj > 0, j = 1, · · · , p, as the diagonal elements.
Note that in (8c) the prior for µ is uniform and independent of the
prior for D.

In the absence of prior information about δjj , it is customary
to make the prior in (8) having non-influential effect by setting the
hyperparameters (h, δjj) to small values such as (0.001, 0.001). We
should note however that the prior IG(ε, ε) becomes improper as
ε→ 0 [26].

Define h̃ = h+N and the sample covariance matrix S as

S =

N∑
k=1

(y − ȳ)(y − ȳ)t (9)

where ȳ = (1/N)
∑N

k=1 yk is the sample mean. It can be shown
that the marginal likelihood m0(Y) defined in (3a) under the prior
distribution (8c) has the following closed form expression [14]

m0(Y) =
1

πNp/2

Γp(h̃/2)

Γp(h/2)

|∆|h/2

|∆ + Diag(S)|h̃/2
. (10)

3.3. Prior Distributions under H1

We shall introduce a collection of possible improper priors for the
covariance matrix Σ. It would be convenient to express Σ−1 in a
unique decomposition form through the Cholesky factorization

Σ−1 = ΨΨt (11)

where Ψ ∈ Rp×p is an upper triangular matrix with positive diago-
nal elements. The off-diagonal elements are denoted by ψjk, k > j.

Rather than using priors on the whole Σ as in [12, 13], we shall
follow [21] and apply priors on the elements of Ψ. The general class
of priors for (µ,Ψ) that we propose is

π1,a(µ,Ψ) =

p∏
j=1

1

ψ
aj

jj

(12)

where a = [a1, ··, aj , ··, ap]t. (12) is a common form that en-
compasses several priors by changing the value of a. Choosing
aj = p − j gives the Jeffreys’ prior πJ and aj = p − j + 1
the independence-Jeffreys’ (left-Haar measure) prior πIJ [22]. If
aj = 2 − j, (12) becomes the Geisser and Cornfield’s prior πGC

that yields the exact frequentist matching inference for all the means
and variances [23]. The right-Haar measure prior πRH for exact fre-
quentist inference is also represented by (12) when setting aj = j.

Finally, using aj = 1 reduces (12) to the reference prior πR [21] that
is defined in [24].

We shall next obtainm1(Y) described in (3b) for the prior (12).
Let the Cholesky factorization of the sample covariance matrix given
in (9) be S = VtV, where V ∈ Rp×p is an upper triangular matrix
with diagonal elements vjj > 0, j = 1, · · · , p. Define the upper
triangular matrix T

∆
= VΨ whose diagonal elements are tjj > 0,

j = 1, · · · , p. Through the Jacobian of the transformation from Σ

to Ψ and from Ψ to T, we have dΣ/dΨ = 2p∏p
j=1 ψ

−2(p+1)+j
jj

and dΨ/dT =
∏p

j=1 v
p−j+1
jj . As a result, the likelihood function

f1(Y/µ,Σ) becomes f1(T/µ,V). Since ψjj = tjj/vjj , it can be
shown that f1(T/µ,V) has the following expression [14],

f1(T/µ,V) =
2p

(2π)
Np
2

p∏
j=1

v
cj
jj

t
−dj
jj

etr
(
−1

2
TTt

)
(13)

where cj = 3(p+ 1)− 2j −N and dj = −2(p+ 1) + j +N .
We have shown in [14] that the off-diagonal elements of T fol-

lows the unit normal distribution and the diagonal elements the chi-
square distribution with kj = dj + 1 degrees of freedom (dof).

Consequently, m1(Y) can be evaluated explicitly as

m1(Y) = 2p(2π)
−Np+O

2

p∏
j=1

2
k̃j
2

−1Γ(
k̃j
2

)v
c̃j
jj , (14)

whereO = p(p+1)/2, d̃j = dj−aj , k̃j = d̃j+1, and c̃j = cj+aj .
For further details, please refer to [14].

3.4. Bayes Factor Evaluation

The prior for D is improper as h, δ → 0, so does the class of priors
(12) for the matrix Σ. The following proposition provides a closed
form expression for the test statistic BF

10.
Proposition 1 [14]: The FBF BF

10 can be evaluated according to
(7) as

BF
10 = K

∏p
j=1 2

k̃j
2

−1( b
2
)
d̃b,j+1

2 Γ(
k̃j

2
)v

c̃j−c̃b,j
jj

Γ(
d̃b,j+1

2
)

|∆ + Diag(S)|
h̃
2

|∆ + bDiag(S)|
h̃b
2

(15)
where the parameters c̃b,j = bcj+aj , d̃b,j = bdj−aj , h̃b = h+bN

and K = 2p(2−b)bN/2Γp(h̃b/2)

2(1−g)Np/2Γp(h̃/2)
.

Proof: We should first substitute (8c) and use π1,a(µ,Σ) from
(12) for π1(µ,Σ) in (7). Then we obtain from (10) and (14) the
factor B10 defined in (4). Simplifying yields the FBF expression
(15). Please refer to [14] for the details. �

Since the gamma function Γ((d̃b,j + 1)/2) in (15) has to be
a positive value, the following condition must be satisfied for the
fraction b,

b >
p− 1

−2(p+ 1) +N + 1
, (16)

where the number of samples should be N > 2(p+ 1)− 1.

4. NUMERICAL RESULTS

This section presents numerical results for the hypothesis testing
problem of spectrum sensing in interweave CR. We use 105 real-
izations to generate data in each hypothesis to evaluate the probabil-
ity of detection and the probability of false alarm according to (5)
and (6). The detection threshold γ in (6) for a given PFA value is
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determined experimentally as the probability PFA does not admit a
closed-form expression. The number of samples to obtain the test
statistics for detection is N = 50.

We compare the performance of the proposed FBF detector (15)
with the ones that are based on the conjugate prior πC in both hy-
potheses [12] and on the generalized likelihood ratio test (GLRT) [5].
Their test statistics are provided in Appendices A and B.

Using l = 4 PU transmit antennas and p = 4 SU receive anten-
nas, Fig. 2 shows the average probability of detection as the signal-
to-noise ratio (SNR) at SU increases while keeping a fixed PFA at
10−3. The fraction b for the proposed FBF is set to b = 0.1. We ex-
amine all members of the class of improper priors: πJ, πIJ, πGC, πRH,
and πR for FBF. They behave similarly and the difference occurs at
very low SNR where the πRH prior shows the lowest PD while the
πR prior has the best detection performance. Any of the FBF out-
performs the conjugate prior [12] and the GLRT test [5] detector
considerably. For example to reach a PD = 0.5, the FBF detectors
require an SNR of −2.5 dB while the other two detectors need 1 dB
and 6 dB, respectively.

Fig. 3 shows the average probability of detection versus the
probability of false alarm. The SNR is −4 dB and the numbers
of antennas are l = 5, p = 5. The fraction for FBF is b = 0.12.
We observe again that the behaviors of the different priors defined in
(12) for the CSI in H1 are similar. They all provide superior perfor-
mance to the detectors using the conjugate prior πC and GLRT test.
At PFA = 10−2, the corresponding probability of detection PD for
the FBF detector with πRH prior, and the πC prior and GLRT based
detectors are 0.67, 0.16 and 1.1× 10−2.

5. CONCLUSION

In this paper, we have developed a Bayesian detector for spectrum
sensing in interweave CR networks. The proposed detector employs
FBF to handle the problem of improper prior distributions in gener-
ating the Bayes factor for detection. We have introduced a new class
of improper priors for the covariance matrix that represents the CSI
between PU and SU. Numerical results show that the proposed FBF
Bayesian detector has superior performance to that with the conju-
gate prior and to the GLRT test.

Appendix A

The conjugate priors for the distributions (2a) and (2b) are (8c)
and the Wishart distributions, respectively. Let u and Υ be the dof
and the scale matrix of the Wishart distribution for (2b). It can be
verified that the Bayes factor (4) corresponding to the conjugate pri-
ors BC

10 has the following form

BC
10 =

Γ(ũ/2)Γp(h/2)

Γ(u/2)Γp(h̃/2)

|Υ|u/2

|Υ + S|ũ/2

|∆ + Diag(S)|h̃/2

|∆|h/2
, (17)

where ũ = u + N . We set Υ = I to indicate that there is no CSI
about the covariance matrix Σ.

Appendix B

The GLRT test statistic from [5] is

TGRLT =
(
C (1− κ/p)p−1)−N

(18)

where C = (1 − 1/p)p−1 and κ = λ1/
∑p

i=1 λi with λi being the
eigenvalues of the covariance matrix 1

N
S arranged in non increasing

order.
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Fig. 2. Performance of the proposed FBF, the conjugate prior [12]
and the GLRT test [5] detector for PU active; the settings are l =
4, p = 4, PFA = 10−3 and b = 0.1.
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