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ABSTRACT

In massive MIMO systems, which rely on uplink pilots to estimate the
channel, the time interval between pilot transmissions constrains the
length of the downlink. Since switching between up- and downlink
takes time, longer downlink blocks increase the effective spectral
efficiency. We investigate the use of low-complexity channel models
and Kalman filters for channel prediction, to allow for longer intervals
between the pilots. Specifically, we quantify how often uplink pilots
have to be sent when the downlink rate is allowed to degrade by a
certain percentage. To this end, we consider a time-correlated channel
aging model, whose spectrum is rectangular, and use autoregressive
moving average (ARMA) processes to approximate the time-variations
of such channels. We show that ARMA-based predictors can increase
the interval between pilots and the spectral efficiency in channels with
high Doppler spreads. We also show that Kalman prediction is robust
to mismatches in the channel statistics.

Index Terms— channel aging, channel estimation, channel pre-
diction, Kalman estimation, massive MIMO.

1. INTRODUCTION

Massive MIMO base stations are equipped with hundreds of antennas,
which enable them to communicate with tens of users over the same
time-frequency resource. Such systems can handle larger volumes of
data and numbers of users than existing systems and are, therefore, a
leading technology for future communication systems [1]. We want
to answer the following questions:

• Can channel prediction increase the interval between pilot
transmissions in massive MIMO? What is the rate loss if the
precoding matrix is based on a predicted channel, instead of a
recently estimated channel?

• How robust is the predictor to imperfect knowledge of the
channel statistics, such as a mismatch in Doppler spread? and
what performance loss does a mismatch incur?

• Can we use low-complexity predictor models to approximate
a given channel spectrum?

Contributions: We consider low-complexity ARMA models to
approximate the time-variations of a channel whose true spectrum
is rectangular. The downlink achievable rates are computed for pre-
dicted channel state information (CSI) acquired using Kalman channel
prediction. We also investigate cases, where either the channel spec-
trum is not fully known or the Doppler spread is not fully known. We
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present numerical results that quantify the loss in rate incurred due
to prediction errors and due to imperfect knowledge of the channel
statistics.

Related Literature: The effect of channel aging on massive MIMO
systems assuming matched filter and an infinite number of antennas
at the base station was investigated in [2]. However, there an AR(1)
model was used to approximate the time-variations of a channel whose
true spectrum is the Jakes spectrum. Another paper that investigated
the effects of channel aging assuming Jakes spectrum is [3], where
the sum-rate for massive MIMO systems with matched filter and zero-
forcing receivers in the presence of channel aging was derived. In [4],
the authors showed that the Doppler shift due to relative movement of
users as well as the phase noise due to noisy local oscillators contribute
to channel aging. They incorporated both these effects in their channel
aging analysis based on random matrix theory for massive MIMO
systems. The problem of optimizing the throughput in terms of the
number of transmit antennas, data and pilot energies in large point-to-
point MIMO systems with channel aging was analyzed in [5], where
it was shown that the effective channel coherence time increases with
increasing number of antennas.

In contrast, in this paper, we consider Kalman filters based low-
order ARMA models to estimate the time-varying channel coefficients
whose true spectrum is rectangular.

2. SYSTEM MODEL

We consider a single-cell massive MIMO OFDM system, where the
bandwidth is divided into u� orthogonal subcarriers. The base station
is equipped with an array of u� antennas and there are u� single-
antenna users in the cell. The u�-tap channel from the u�th user to
the u�th base station antenna over the u�th OFDM symbol is denoted
by �̃�u�

u� [u�] = [ ̃u�u�
u� [u�, 0] ̃u�u�

u� [u�, 1] ⋯ ̃u�u�
u� [u�, u� − 1]]u� . For any user-

antenna pair, the taps are assumed to be independent, but need not
be identically distributed. We assume that the path-loss from a user
is the same to all the base station antennas. Furthermore, we con-
sider uncorrelated Rayleigh fading with �̃�u�

u� [u�] ∼ 𝒞𝒩(𝟎, u�u�), where
u�u� = diag(Λu�[0], … , Λu�[u�−1]) is a diagonal matrix representing
the channel power delay profile and large-scale fading of the u�th user.

2.1. Uplink Pilot Signaling and Channel Estimation

The frequency-domain signal 𝐲u�[u�] ∈ ℂu�u�×1 received over the u�th

OFDM symbol at the u�th base station antenna during uplink pilot
transmission is

𝐲u�[u�] =
u�

∑
u�=1

√u�u�
u�u�u�

u�u�u��̃�u�
u� [u�] + 𝐰u�[u�], (1)

where u�u�
u� is the uplink pilot SNR per subcarrier and per OFDM sym-

bol of the u�th user and u�u�
u� ∈ ℂu�u�×u�u� is a diagonal matrix with the
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u�u�-length pilot sequence 𝐱u�
u� of that user on its diagonal. The ma-

trix u�u� ∈ ℂu�u�×u� consists of the first u� columns and u�u� rows of the
u�-point discrete Fourier transform (DFT) matrix u� ∈ ℂu�×u�, where
[u�]u�,u� = u�−u�2u�(u�−1)(u�−1)/u�. The rows in u�u� correspond to the set
of subcarriers on which the u�u� pilots are sent. The pilots are equally
spaced in frequency and u�u� ≤ u�. The noise vector is denoted by
𝐰u�[u�] ∼ 𝒞𝒩(𝟎, 𝐈u�u�

) and is independent and identically distributed
(i.i.d.) across antennas u� and time u�. The pilot sequences are orthog-
onal between the users, in the sense that u�H

u� u�u�H
u� u�u�

u�u�u� = u�u�𝐈u�u�u�u�,
where u�u�u� = 1 if u� = u� and u�u�u� = 0 otherwise. For this condition to
hold u�u� ≥ u�u�. A sufficient statistics for estimating ̃𝐠u�

u� [u�] is

�̃�u�
u� [u�] = 1

√u�u�

u�H
u� u�u�H

u� 𝐲u�[u�] = √u�u�
u�u�u��̃�u�

u� [u�] + �̃�u�
u� [u�], (2)

where �̃�u�
u� [u�] ∼ 𝒞𝒩(𝟎, 𝐈u�) is i.i.d. across u� and u�.

2.2. Time-Correlated Channel Fading Model

The autocorrelation function (ACF) determines how the wireless
channel varies over time. The ACF depends on the propagation ge-
ometry, the velocity with which the user moves and the antenna char-
acteristics. In a scenario with isotropic scattering in all three dimen-
sions, it is shown in [6] that the power spectral density (PSD) has
flat band-limited characteristics with a normalized ACF u�u�u�[u�] =
sinc(2u�u�u�u�u�), where u�u� is the maximum Doppler frequency and u�u�
is the OFDM symbol duration. This is the PSD that we consider
in this paper, motivated by the fact that massive MIMO enables 3D
beamforming, but we stress that the predictor can be used on channels
of any ACF.

The objective is to estimate the channel taps at different time
instants. To this end, the true ACF of the time variations is approx-
imately modeled by a finite-order ARMA model. An ARMA(u�, u�)
model for ̃u�u�

u� [u�, u�] can be written as [7]

̃u�u�
u� [u�, u�] =

u�

∑
u�=1

u�u� ̃u�u�
u� [u� − u�, u�] +

u�

∑
u�=0

u�u�ũ�u�
u� [u� − u�, u�], (3)

where u� is the model order. One way to closely approximate the
rectangular spectrum of the ACF u�u�u�[u�] = sinc(2u�u�u�u�u�) is to se-
lect the coefficients u�u� and u�u� in (3) from the transfer function of a
Butterworth low pass filter of order u� with cutoff frequency u�u�u�u�.

The ARMA model can be equivalently given as a state-space
model with the state transitions

�̃�u�
u� [u� + 1, u�] = 𝐀�̃�u�

u� [u�, u�] + 𝐁�̃�u�
u� [u� + 1, u�], (4)

where �̃�u�
u� [u�, u�] ≜ [ ̃u�u�

u� [u�, u�], … , ̃u�u�
u� [u� − u� + 1, u�]]u� is the state of the

system of the u�th channel tap at time u�, and �̃�u�
u� [u� + 1, u�] is the white

Gaussian process noise. The matrices 𝐀 and 𝐁 in (4) are

𝐀 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u�1 u�2 ⋯ u�u�
1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ ℂu�×u�, (5)

𝐁 =
⎛⎜⎜⎜⎜⎜
⎝

u�0 u�1 ⋯ u�u�
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟
⎠

∈ ℂu�×(u�+1). (6)

From (2), the observations of the state of channel tap u� at time u�
can be represented by a linear equation

̃u�u�
u� [u�, u�] = 𝐒�̃�u�

u� [u�, u�] + ũ�u�
u� [u�, u�], (7)

where
𝐒 = [√u�u�

u�u�u�, 0, … , 0] (8)

and ũ�u�
u� [u�, u�] ∼ 𝒞𝒩(0, 1) is the additive measurement noise.

Given a set of observations ̃u�u�
u� [1, u�], ̃u�u�

u� [2, u�], …, ̃u�u�
u� [u� + 1, u�],

the task is to determine the filter that at the (u� + 1)th time instant
generates an estimate ̂�̃�

u�
u� [u� + 1, u�] of the state �̃�u�

u� [u� + 1, u�]. This
motivates the use of a Kalman filter. The following steps obtain the
Kalman estimate of the u�th channel tap:

1. Initialization: We begin by initializing ̂�̃�
u�
u� [0, u�]∣[0] = 𝟎 and

the prediction error covariance matrix 𝐏0|0 = Λu�[u�]𝐑, where

𝐑 =
⎡
⎢⎢⎢
⎣

u�u�u�[0] u�u�u�[1] ⋯ u�u�u�[u� − 1]
u�u�u�[1] u�u�u�[0] ⋱ u�u�u�[u� − 2]

⋮ ⋱ ⋱ ⋮
u�u�u�[u� − 1] ⋯ ⋯ u�u�u�[0]

⎤
⎥⎥⎥
⎦

(9)

and u�u�u�[u�] = sinc(2u�u�u�u�u�) for the exemplified ACF.
2. One-step-ahead prediction: This involves estimating the state

at u� + 1 based on observations up to time instant u�:

̂�̃�
u�
u� [u� + 1, u�]∣[u�] ≜ 𝔼[�̃�u�

u� [u� + 1, u�]∣( ̃u�u�
u� )u�] = 𝐀 ̂�̃�

u�
u� [u�, u�]∣[u�],

(10)

where ( ̃u�u�
u� )u� = ̃u�u�

u� [1, u�], … , ̃u�u�
u� [u�, u�].

3. Computing the prediction error covariance matrix: The pre-
diction error covariance matrix is given by

𝐏u�+1|u� ≜ 𝔼[(�̃�u�
u� [u� + 1, u�] − ̂�̃�

u�
u� [u� + 1, u�]∣[u�])

× (�̃�u�
u� [u� + 1, u�] − ̂�̃�

u�
u� [u� + 1, u�]∣[u�])u� ∣ ( ̃u�u�

u� )u�]

= 𝐀𝐏u�|u�𝐀u� + 𝐁𝐁u�. (11)

4. Kalman update: Given the prediction ̂�̃�
u�
u� [u� + 1, u�]∣[u�], sup-

pose we take another observation ̃u�u�
u� [u� + 1, u�], then this can

be used to update the predictive estimate as

̂�̃�
u�
u� [u� + 1, u�]∣[u� + 1] = ̂�̃�

u�
u� [u� + 1, u�]∣[u�]

+ 𝐊u�+1 ( ̃u�u�
u� [u� + 1, u�] − 𝐒 ̂�̃�

u�
u� [u� + 1, u�]∣[u�]) , (12)

where ̃u�u�
u� [u� + 1, u�] denotes the observation at the current time

instant u� + 1 and 𝐒 ̂�̃�
u�
u� [u� + 1, u�]∣[u�] denotes the predicted

observation. The Kalman gain matrix 𝐊u�+1 that minimizes
the mean square error is given by

𝐊u�+1 = 𝐏u�+1|u�𝐒u� (𝐒𝐏u�+1|u�𝐒u� + 1)
−1

. (13)

5. Updated error covariance matrix: The updated error covari-
ance matrix is given by:

𝐏u�+1|u�+1≜𝔼[(�̃�u�
u� [u� + 1, u�]− ̂�̃�

u�
u� [u� + 1, u�]∣[u� + 1])

× (�̃�u�
u� [u� + 1, u�]− ̂�̃�

u�
u� [u� + 1, u�]∣[u� + 1])u� ∣ ( ̃u�u�

u� )u�+1]

= (𝐈u� − 𝐊u�+1𝐒) 𝐏u�+1|u� (𝐈u� − 𝐊u�+1𝐒)u� + 𝐊u�+1𝐊u�
u�+1. (14)

This Kalman filter will be used for channel prediction in the next
sections. We focus on the downlink where the channel ages but no
new uplink pilots are available.
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3. ACHIEVABLE DOWNLINK RATE ANALYSIS

In this section, we derive the achievable downlink rates, when using
predicted channels. The signal 𝐱u�[u�, u�] ∈ ℂu�×1 transmitted by the
base station in the downlink over the u�th subcarrier and the u�th OFDM
symbol is

𝐱u�[u�, u�] = √u�u��̂�[u�, u�]𝐪[u�, u�], (15)

where u�u� is the downlink SNR, �̂�[u�, u�] ∈ ℂu�×u� is the precoding
matrix that depends on the predicted CSI at the u�th OFDM symbol
index and the u�th subcarrier, and 𝐪[u�, u�] ∼ 𝒞𝒩(𝟎, 𝐈u�) contains the
information symbols that is transmitted to the u� users.

The precoding matrix �̂�[u�, u�] should be selected based on
the predicted estimates of the channels �̃�u�

1 [u�], … , �̃�u�
u�[u�] that are

available at the base station at time u�. Recall that the first entry
of the state X̃u�

u� [u�, u�] contains the prediction of the u�th channel tap
at time u�. We can gather these predictions in a vector ̂̃𝐠u�

u� [u�] for
u� = 0, … , u� − 1, which is the prediction of �̃�u�

u� [u�]. The predicted
channel matrix �̂�[u�, u�] ∈ ℂu�×u� at subcarrier u� is then formed by
setting [�̂�[u�, u�]]u�,u� = u�u�

u� ̂�̃�u�
u� [u�], where u�u�

u� consists of the u� first
elements at the u�th row in the DFT matrix u�.

We consider zero-forcing, where the precoding matrix is

�̂�[u�, u�] = u�ZF�̂�[u�, u�] (�̂�[u�, u�]u��̂�[u�, u�])
−1

. (16)

The factor u�ZF is chosen such that tr(�̂�[u�, u�]�̂�[u�, u�]u�) = 1, which
makes 𝔼[‖𝐱[u�, u�]‖2] = u�u�.

The signal vector 𝐲u�[u�, u�] ∈ ℂu�×1 received collectively at the u�
users is given by

𝐲u�[u�, u�] = 𝐆u�[u�, u�]𝐱u�[u�, u�] + 𝐰u�[u�, u�], (17)

where 𝐰u�[u�, u�] ∼ 𝒞𝒩(𝟎, 𝐈u�) denotes the additive white Gaussian
noise. Then, the signal u�u�u�

[u�, u�] received on the downlink at the u�th

user over the u�th OFDM symbol and the u�th subcarrier is

u�u�u�
[u�, u�] = √u�u�𝐠u�

u� (u�, u�)�̂�u�[u�, u�]u�u�[u�, u�]

+ √u�u� ∑
u�≠u�

𝐠u�
u� [u�, u�]�̂�u�[u�, u�]u�u�[u�, u�] + u�u�u�

[u�, u�], (18)

where �̂�u�[u�, u�] is column u� of �̂�[u�, u�]. Let us define u�u�u� ≜
𝐠u�

u� [u�, u�]�̂�u�[u�, u�]. The users are assumed to only have statistical
CSI, since there are typically no downlink pilots in massive MIMO.
Therefore, we use the technique in [8] to obtain the downlink rate
over subcarrier u� and OFDM symbol u� as

u�u�(u�, u�)= log2
⎛⎜⎜⎜
⎝
1+

u�u� ∣𝔼 [u�u�u�]∣
2

1+u�u� var [u�u�u�] +u�u� ∑u�≠u� 𝔼 [∣u�u�u�∣
2]

⎞⎟⎟⎟
⎠

. (19)

Note that we compute a separate rate for each subcarrier u� and OFDM
symbol u�. On average, the rate over any time-frequency grid will
be 1

u�u�u�
∑u� ∑u� u�u�(u�, u�), where u�u� is the number of OFDM symbols

used for downlink data transmission.

4. NUMERICAL RESULTS

In this section, we present numerical results to understand how channel
prediction can be used to improve the zero-forcing precoder as the
channel ages. Unless mentioned otherwise, we take u� = 100, u� = 8,
u� = 8, u� = 256 and u�u� = u�u�

u� = −5 dB. We consider a uniform power
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Fig. 1: Uplink pilots and downlink data transmission.
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Fig. 2: Power spectral density of ARMA predictors of different order,
u�u�u�u� = 0.02

delay profile1 and we take the number of pilot subcarriers u�u� = u�u�.
We further assume that the pilots are distributed over OFDM symbols
1 to 7 as shown in Fig. 1. We consider the normalized Doppler spread
values 0.01, 0.02 and 0.03, which correspond to mobile scenarios
at speeds of 81, 160 and 240 km/h with 2 GHz carrier frequency
and u�u� = 66.67 μs OFDM symbol duration (15 kHz inter-subcarrier
spacing).

Fig. 2 shows the PSDs of ARMA predictors of different orders,
whose ARMA coefficients are obtained from the transfer function of
a Butterworth low pass filter of order u� with cutoff frequency u�u�u�u�.
These PSDs are used to approximate the rectangular spectrum of
the true PSD of the channel. We observe that, as the model order
increases, the spectrum falls off more sharply at the transition from
the passband to the stopband.

Fig. 3 plots the average downlink rate ( 1
u� ∑u� u�u�(u�, u�)) as a func-

tion of the OFDM symbol index with an ARMA(2,2) predictor for
different Doppler spreads u�u�u�u�. Kalman estimates of the channel
matrices are obtained from the uplink pilots located over symbols 1
to 7. For symbol indices 8 to 17, channel prediction is performed
as only downlink data is transmitted over these symbols. The zero-
forcing precoder computations over symbols 8 to 17 are based on
the predicted channel matrices. It can be observed that the downlink
rate decreases as u�u�u�u� increases or as time elapses with the increase
in OFDM symbol index, since the channel estimates become more
and more outdated. We also plot the case of no prediction, where in-
stead of predicting the channel from 8th–17th OFDM symbol, we just
continue to use the zero-forcing matrix computed at the 7th OFDM
symbol index for precoding at subsequent OFDM symbols. While
no prediction performs as well as ARMA(2,2) prediction at lower

1Note that channels with uniform power delay profile represent the worst
case scenario [9]. Therefore, the study of such channels gives us an insight
into the performance under the worst case conditions.
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values of the normalized Doppler frequency u�u�u�u�, the gain in rate
due to prediction increases as u�u�u�u� increases. Also plotted is the
channel update approach, where zero-forcing matrix computations
are obtained assuming the existence of uplink pilot transmissions over
all the OFDM symbols 1 to 17.

This plot gives us an idea about how often we need to send uplink
pilots before the rate has dropped below a certain percentage. For
example, four downlink OFDM symbols can be sent in case of channel
prediction and u�u�u�u� = 0.02 if the system can tolerate a rate reduction
by about 8%.

Fig. 4 plots the average rate as a function of the OFDM symbol
index for the case when the channel spectrum is not fully known. We
consider the ARMA(2,2) predictor from the previous figure, as well
as an AR(2) predictor that is designed as if the ACF were a Bessel
function (i.e., a Jakes spectrum). It is observed that the mismatched
AR(2) predictor is almost as good as the ARMA(2,2) predictor and
that no prediction results in the worst downlink rate. This indicates
that the prediction can work despite mismatches in the statistics.

Figs. 5a and 5b plot the average downlink rate as a function of the
OFDM symbol index for the case when there is a mismatch between
the Doppler spread of the channel and the Doppler spread with which
the predictor is designed, for ARMA(2,2) and ARMA(6,6) predictors
respectively. There is a slight rate reduction in case of a mismatch,
both when u�u�u�u� is smaller or larger than the true value, particularly at
higher ARMA model orders.

Fig. 6 plots the average downlink rate over the 14th OFDM symbol
as a function of the ARMA model order. It can be observed that the
downlink rate increases marginally with the increase in the model
order. It is, therefore, justified to use predictor models of order 2
which are computationally less expensive without compromising the
performance.
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5. CONCLUSIONS

We investigated how channel prediction can be used in the downlink to
improve the performance of the zero-forcing precoder as the channel
ages. To this end, we designed a Kalman filter and exemplified it for
channel aging modeled by a rectangular spectrum. We observed that
an ARMA-based predictor can improve the spectral efficiency over
no prediction, particularly at higher Doppler spreads. At low Doppler
spreads, no prediction works reasonably well and performs poorer than
channel prediction only when the channel becomes highly outdated.
We also looked at how robust the predictors are to mismatches in the
Doppler spreads. We found that, for a channel with rectangular PSD,
the performance loss is marginal, which is explained by the fact that
the channel decorrelates relatively slowly over time.
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