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ABSTRACT

This work considers the downlink of a multicell massive MIMO sys-
tem in which L base stations (BSs) of /V antennas each communicate
with K single-antenna user equipments randomly positioned in the
coverage area. Within this setting, we are interested in evaluating the
sum rate of the system when MRT and RZF are employed under the
assumption that each intracell link forms a MIMO Rician uncorre-
lated fading channel. The analysis is conducted assuming that N and
K grow large with a non-trivial ratio N/ K under the assumption that
the data transmission in each cell is affected by channel estimation
errors, pilot contamination, and an arbitrary large scale attenuation.
Numerical results are used to validate the asymptotic analysis in the
finite system regime and to evaluate the network performance under
different settings. The asymptotic results are also instrumental to get
insights into the interplay among system parameters.

1. INTRODUCTION

Massive MIMO is considered as one of the most promising technol-
ogy for next generation cellular networks [1-4]. The massive MIMO
technology aims at evolving the conventional base stations (BSs) by
using arrays with a hundred or more small dipole antennas. This
allows for coherent multi-user MIMO transmission where tens of
users can be multiplexed in both the uplink (UL) and downlink (DL)
of each cell. It is worth observing that, contrary to what the name
“massive” suggests, massive MIMO arrays are rather compact; 160
dual-polarized antennas at 3.7 GHz fit into the form factor of a flat-
screen television [5].

In this work, we consider the DL of a massive MIMO system
in which L BSs of N antennas each communicate with K single-
antenna user equipments (UE) randomly positioned in the coverage
area. We assume that the system is affected by channel estimation
errors, pilot contamination, and an arbitrary large scale attenuation.
Maximum ratio transmit (MRT) or regularized zero forcing (RZF)
are used as linear precoding techniques. Differently from most of
the existing literature, we model the intracell communication links
as MIMO Rician uncorrelated fading, which is more general and
accurate to capture the fading variations when there is a line-of-
sight (LOS) component. Compared to the Rayleigh fading channel,
a Rician model makes the analysis of massive MIMO systems much
more involved. To overcome this issue, recent results from random
matrix theory and large system analysis [6, 7] are used to compute
asymptotic expressions of the signal-to-interference-plus-noise ra-
tios (SINRs), which are eventually used to approximate the ergodic
sum rates of the system. As a notable outcome of this work, the
above analysis provides an analytical framework that can be used
to evaluate the performance of the network under different settings
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without resorting to heavy Monte Carlo simulations and to eventu-
ally get insights on how the LOS components affect the network
performance.

The main literature related to this work is [3, 8—11]. Tools from
random matrix theory are used in [8] to compute the ergodic sum
rate in a single-cell MIMO setting with Rayleigh fading and differ-
ent precoding schemes while the multicell case is analyzed in [9].
Similar tools are used in [10] to solve the power minimization prob-
lem under different configurations of cooperation among BSs. A
similar large system analysis is presented in [3] for the UL and DL
of Massive MIMO in cellular networks, wherein channel estimation
and pilot contamination are also taken into account. All these works
relies on random matrix theory but assume that a Rayleigh fading
channel model. In [12], the authors investigate a LOS-based conju-
gate beamforming transmission scheme and derive some expressions
of the statistical SINR under the assumption that /N grows large and
K is fixed. In [13], the authors study the fluctuations of the mutual
information of a cooperative small cell network operating over a Ri-
cian fading channel under the form of a central limit theorem and
provide an explicit expression of the asymptotic variance. In [14], a
deterministic equivalent of the sum rate and an algorithm for evalu-
ating the capacity achieving input covariance matrices for the uplink
of a large-scale MIMO are proposed for spatially correlated MIMO
channel with LOS components. The analysis of the uplink rate with
both MR and ZF combining receivers is performed in [15].

2. SYSTEM MODEL

Consider a massive MIMO system composed of L cells, the BS of
each cell comprising N antennas to communicate with K single-
antenna UEs. A double index notation is used to refer to each UE
as e.g., “user k in cell j”. Under this convention, let hj;, € CN be
the channel from BS j to UE k in cell [ within a block and assume
that hj;x = /B W i Where 315, accounts for the corresponding
large scale channel fading or path loss (from BS j to UE k in cell
) and wj;, € CY is the small scale fading channel. The channel
matrix H;; € CV*¥ from BS [ to BS j is thus given by H;; =

[hji1,. .., hjix]. We assume that
= l=j 1
Wijk = T rr ”1+I€]1@ J (D
Witk = Zjlk L5 @

where z;, € CY is assumed to be Gaussian with zero mean and unit
covariance, i.e., zjix ~ CN'(On,Ix), a;;5 € CV is a deterministic
vector, and the scalar xj, > 0 is the Rician factor. For notational
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convenience, we let

- Bijk .
d]]k - 1+ ij l =7 (3)
djix = Bjik L#] 4

such that h;;x can be rewritten as h;;x = hjjk +hj;, and hj, =
hJ”€ with h]lk = /djwzk and hyji = \/djjkkin; k.

‘We assume that the BS and UEs are perfectly synchronized and
operate according to a time-division duplex (TDD) protocol wherein
the DL data transmission phase is preceded in the UL by a training
phase for channel estimation. If a single-cell MMSE estimator is
employed [3], then the estimate ﬁjji of h;;x Vj, k is given by

N o d]jk: tr 1
hjjr = hyj; / o 1 Zn dim (ya'k - hjak) ®)
where p* accounts for the SNR during the UL training phase

and Yﬁ = hy;r + ZZL Li%j hj;, +1/ “ngk with nt-r ~
CN(0x,Ty). The estimate h;;p, is such that ~ CA (hjjx, ¢;;5In)

with

djjkdjlk

Gk =T ——r o
o+ 2n—1 dink

©)

The estimated UL channel of cell j is thus given by ﬁjj =

[ﬂjjl,...,ﬁjjx}. According to the orthogonality principle of
MMSE estimation, the estimation error e, = hjjr — hjji is

distributed as ~ CA (O, (djjx — ¢j5x) In).

We denote by g;x € CV the precoding vector of UE k in cell
j. Asin [1, 3,16, 17] (among many others), we assume that there
are no downlink pilots such that the UEs do not have knowledge
of the current channels but can only learn the average channel gain
E{hﬁ +8;k } and the total interference power. Using the same tech-
nique from [18], an ergodic achievable rate for UE k in cell j is
7k = logs(1 + 7,1 ) where ;i is given by [1, 3,4, 16]

|E[h,g;:]?

E[lhf, gul*] —

Vik = )

\\Mw

L
P BT (E
where the expectation is taken with respect to the channel realiza-
tions and p! accounts for the SNR in the DL. As mentioned earlier,
we consider MRT and RZF as precoding schemes. This yields

h .. o~
g = dik = = v/0;hjji ®)
VE[F S5 ]
u; .
gt = = = /¥t ©)

VE[E SE el

where fi;, = % Q,h; ;5 with Q; = (% SK by 4+ ,\;-“IN)

3. ASYMPTOTIC ANALYSIS

We exploit the statistical distribution for the channels {H,; } and the
large dimensions of IV and K to compute a deterministic approx-
imation of 7;x for MRT and RZF, which will be used to find an
approximation of the ergodic sum rate. In doing so, we assume that:

Assumption 1. The dimensions N and K grow to infinity at the
same pace, that is 0 < liminf K/N < limsup K/N < 1.

Assumption 2. As N, K — oo, sup; —=|[Hj;|| < oo which
implies that the Euclidean norm of the column vectors {h;;;} are

uniformly bounded in N, K.

Our first result is the asymptotic approximation of the SINR of
the system when MRT is employed.

Theorem 1 (MRT). Let Assumptlons 1 — 2 hold true. If MRT is
employed, then 7MRT *M T — 0 almost surely with

_ g N2
0; (¢jjk + ihjjkhjjk)
Vik = (10)

Np dl + S5k + Z eld)lyk
=115

where S, takes the form

1 1—m—
Sk = Z Z 1dijk (qbzzi + Nhllihlli)
=1 =1
1 a 1 —
+N Z <¢JJ’LN JthJJk+ N hJthmk ) 11
i=1,i#k
% -1

Proof. The proof is omitted for space limitation. It follows the same
arguments of those in [3, Theorem 4] taking into account the differ-
ent system model due to the presence of the LOS components. [

As for the RZF, we call ®,; = dlag{¢“17~~v¢ij} and
rewrite H;; = [h]’jl e h]]K] e X
Hy; = Z;;®;; + Hy;. a4

Then, let us introduce the fundamental equations that are needed to
express a deterministic equivalent of v,z under RZF. We start with
the following set of equations:

1 ~ — A
6j:Ntr(/\j(1+5,)1N+—H (g +8;®5)" Hjj> (15)

N
HH, -
1 u> 16)

~ 1
0j = w7 tr i (Aj (Ix +0;®55)+ —

which admits a unique positive solution in the class of Stieltjes trans-
forms of non-negative measures with support R [6,7]. The matrices

~ 1 o\t
T, = (Aj(1+5j)IN+ H;;(Ix+6;®;;) 1H§§) (7

—H— -1
1 Hjjffj]) (18)

—1  are approximations of the resolvent Q;; = ( H HH +0In)7H

and co-resolvent Q; = ( L HHH” +X;Ix) 7t Also, let us define
¥; = +tr(T3), 9, = tr(®,;T;)? and

1 — _ —
F]' = ﬁtr (T?H” (IK + 6]'§jj) 2 QJJH;H;) (19)
Aj = (1—Fy)? = 239,09 (20)

Then, the following theorem summarizes a major result of this work:
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ik = dijrl; — ¢z2jk5z)\l [Tk (251 — SN T o kw (durmn +fzk)) l#j (12)
isn =75 (dign = dgn (1= NIT51R) ) + AT R I=j a3)
Theorem 2 (RZF). Let Assumptions 1 — 2 hold true. Then, if RZF and also
is employed we have that maxy, |’y]P}CZF - 7RZF| — 0 almost surely
j di; T .
with g = i [l 1#£] @)
@' ( 1zik )2 1 l
. = .
Tk = = R St = 5 (g = dpw) +1=N[Tl 1= (0)
b15k0
I
I=11#; with ;1 being given by (25) — (26) on the top of the next page and
o 1 - =. .
with Wi, = N 1 whereas wj and 5y, take the form:

1-F 1
Aj(1+5;)2 KN

— (A1
Y= (AJKtI‘¢”T +

_ L
Sjk = ;Ez (&g — Npujn) — b; ( 1 fgjk )Q—Z_; @z (fbfglk
= =1#j
with
& = dijudt — N[Tiler (drx01)° L#j (22
&gk = 0; (dijk — bygn) T 1= N[Tilew  1=j  (23)

and ;1 being given by (12) — (13) on the top of this page and

_ 11
v, = E—trTl
T L H80H, T .
_ 1-F [Tz ~Hu szTz]kk O ([T@uTier e
A NI, +6)2 A [T]Rk

Proof. The proof is very much involved and relies on results in ran-
dom matrix theory [6, 19] as well as some recent ones on bilinear
forms [7]. Due to the space limitations, it is omitted. O

3.1. Limiting case N — oo with K/N — 0

We now look at the limiting case in which N — oo such that
K/N — 0. The following results are easily obtained from the
asymptotic analysis above:

Corollary 1 (MRT). If N — oo such that K/N — 0, then:
_ —H — 2
_wRT _ 0; (¢jjk + %hjjkhjjk)
ik 5 T . (24)
1=1,1#]

’Nhjﬂhjjk
i=1,i#kK

Corollary 2 (RZF). If N — oo such that K/N — 0, we have that:

05 (1= M)
T = — - 3
Sjk + Z ’l/) 0%, [T1]2,

1=1,1

where ¢ f—tr<I>]]T + = trT H SH; 5T with

—1
(/\ i+ @, + NH”H”) (28)

Ejk—

HMD

L
U, (Ejx — Mipjn) — 1/) (1— T ) Z ¢l]k
=11
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-1 Stk = 21 12 )\2
—— T, H H,, T, ) ALITuR, I

T L i T ~ ~
[TlﬁHllHllTl]kk 1<[qu)llTl]kk
[Ti]7k

— ¢uk> .

2Proof. If K/N — 0, then we have that §; = /\;1, gj = 0. More-

OoVver, 19j :)\JQ,F]':{;]':O, Aj :1,%:/\;2. O

The above corollaries show that when N grows at a faster rate
than K, differently from Rayleigh fading [3], the asymptotic inter-
ference does not necessarily vanish as it depends on the LOS com-
ponents. If MRT is considered, it is easily seen from (24) that the
remaining interference is due to the intracell interference, which de-
pends on the inner products between different channel vectors h;;
and h ;1. Similar observations can be made under RZF.

Consider now a system in which h”,h”;C — 0Vi # kas
N — oo. This amounts to assuming that the UEs are selected such
that the favorable propagation conditions are asymptotically satisfied
[20]. Then, we have that:

Corollary 3. If N — oo with K/N — 0 and 505, — 0
Vi # k, then:

_ L TH — 2
wrr 0 (¢jjk + *hjjkhjjk)

Yk = (31)
Z 91¢l;k
1=1,1%#j
_ L H — 2
e ¥ @ik + whyehjje
TR = s (32)
S R LRI e LA P D62
I=1,1#j X+ duk+F BBk ML
K
with 1/)]' _ Z ¢JJk+Nh7thJJk

PJ
k:l ()‘ +¢17k+1\7 g;khnk)

Proof. If %Hﬁiﬂj]’k — 0 Vi # k, then ’I‘j in (28) becomes diag-
onal with [T;]xx = (Aj + ¢k + %Eﬁkﬂjjk)_l. Also, it can be
proved after standard but tedious calculus that 55, — 0. O

In line with [15,20], the above corollaries show that if the MIMO
Rician fading channel results in favorable propagation, then the in-
terference vanishes as N grows unbounded for both MRT and RZF.
In practice, this means that those asymptotic values can only be
achieved if some UEs are dropped from service [21]. From Corol-
laries 3 and 4, it also turns out that, as for Rayleigh fading chan-

2 nels [3, Corollary 1], the asymptotic SINRs under RZF and MRT

* are not necessarily the same. This is because the matrix Q; under
RZF depends on the correlation matrix ®; through (14).



1 2 o (bur  _ N2 .
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1 ~ ~ _ .
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Fig. 1. Average rate per UE vs N when K = 10, x = 0.1, 5 and 30.

3.2. A case study

The above asymptotic results will be validated in Section IV and
used to make comparisons between MRT and RZF under different
settings. In addition to this, they can be used to get some insights
on the effects of the Rician component. To this end, let us consider
the regime in which N and K grow to infinity at the same pace and
assume that the channel can be simply modelled as follows:

1 K .
i =\ T2k T T2 l=3j (33)
hjie = Vozi L#j (34)
such that ¢, = ﬁy forl = jand ¢ = v forl # j
with v = prit;f and L = a(L — 1) 4 ;. Assume also that H

has orthogonal columns, i.e. ﬁﬁﬁj i = wylk. This is achieved
if {a;;} are such that 2a%,a;;, = 1and Lalla;;, = 0Vi #
k. For simplicity, we consider only MRT (similar results can be
obtained for RZF):

Corollary 4 (MRT). Let Assumptions I — 2 hold true. If the channel
is modeled as in (33) and Hj; satisfies the condition above Yj, then

7MRT _ 1
ik = 7
L 14k 1 K— o [— 1
e 1y 4 214+ 2 (L - )
Npdt 7 prr N T2 1+«k
—— N——
Noise Imperfect CSI Interference Pilot Contamination
T 7 1 1
where v = Fer and I = ol -+ 5 ™= ot D
_ (K7 1 1+ K 1 _ 714 1
A= (WL+ dil)T“rﬁﬁﬁ“”dB—LT“F?zﬁ'

From the above results, it follows that the effective SNR
vNpd! 11}{ increases linearly with N as it happens for Rayleigh
fading channels [3, Corollary 2]. Also, it increases with the Rician
component x as vy As for a Rayleigh model, the channel esti-
mation errors and interference vanish only if NV grows large. Indeed,

if k increases A tends to %f + ﬁ whereas B goes to L. On the

B ﬁ Zf:1 2521 Elogy(1 + 'Y_}'{kZF)
b At ﬁ Z_?:l EkK:1 log, (1 +7§{]€ZF)
== R 25 i Elogy (1 +3T)
ﬁ 2_7;:1 Zi«{:l log, (1 + W%CRT)

10 15

Average rate per UE [bps/Hz]

20

Rician factor, K

Fig. 2. Average rate per UE vs x when K = 10 and N = 100.

other hand, the pilot contamination term goes to zero with & as 1/x>
(since 7 — K /v as k grows large).

4. NUMERICAL RESULTS

Monte-Carlo simulations are now used to validate the accuracy of
the above asymptotic analysis for finite values of N and K. We
consider a multi-cell system with L = 3 cells. The inner cell radius
is normalized to one and we assume that the large scale coefficients

are given by S = ﬁ where x;;, is the distance from BS j to

UE k in cell [ and « 2 2.5 is the path loss exponent. We further
assume that p'" = 6 dB and the transmit SNR is p®' = 10 dB.

Fig. 1 illustrates the average rate per UE when N grows large
and K is kept fixed to 10. Also, we assume that X]?“ Nlp(dl. The
Rician factor is assumed to be the same for all UEs, i.e., kjr = K
Vj, k, and equal to x = 0.1,5 and 30. As seen, the asymptotic
results perfectly match the Monte Carlo simulations. Moreover, as
both x and N increase, the gain of RZF over MRT becomes less
significant. In particular, for k = 30, RZF and MRT achieve the
same performance when N is larger than 300. In Fig. 2, we further
investigate the impact of x when NN is kept fixed to 100 and K = 10.
As expected, both schemes have better better performance for higher
values of xk and RZF always outperforms MRT.

5. CONCLUSIONS

We investigated the effect of a Rician fading channel on the DL
ergodic sum rate of MRT and ZF precoding schemes in massive
MIMO systems with a very general channel model, under the as-
sumption that data transmission was affected by channel estimation
errors and pilot contamination. Recent results from random matrix
theory were used to find asymptotic approximations. Such approx-
imations turned out to depend only on the long-term channel statis-
tics, the Rician factor and the deterministic components. Numerical
results indicated that these approximations are very accurate. Ap-
plied to practical networks, such results may lead to important in-
sights, especially with respect to the Rician factors, CSI quality and
induced interference. Moreover, they can be used to simulate the
network behavior without to carry out extensive Monte-Carlo simu-
lations.
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