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ABSTRACT

We propose computationally efficient carrier frequency off-
set estimators for multicarrier underwater acoustic commu-
nication using identical pilot tones equi-spaced in the fre-
quency domain. The first estimator uses the phase of the
maximal eigenvector of a channel-dependent correlation ma-
trix. Next, the phase of the minimal eigenvector of a channel-
independent correlation matrix is combined with the first es-
timation using a weighted linear least squares principle. The
third estimator solves a generalized eigenvalue decomposition
problem by jointly considering the two correlation matrices,
and then performs a similar second step as the previous esti-
mator. Simulations and pool trials show that the proposed es-
timators achieve similar performance as common estimation
techniques while surpassing them in severe environments.

Index Terms— multicarrier communication, carrier fre-
quency offset, underwater acoustic communication

1. INTRODUCTION

Carrier frequency offset (CFO) in orthogonal frequency devi-
sion multiplexing (OFDM) communication systems may cause
inter-carrier interference and degrades the performance of the
OFDM decoder [1, 2, 6, 7, 8, 9]. Contrary to the radio com-
munication channel, the time variations of the underwater acous-
tic communication (UAC) are non negligible and result in non
uniform Doppler shifts [3]. There are two common CFO es-
timators in UAC OFDM using block-by-block processing. Li
et al. introduced [3] a nonlinear least-squares (LS) CFO es-
timate using equi-spaced pilot symbols in each block, which
are also used to estimate the channel impulse response (CIR).
The authors also employed the LS principle with null sym-
bols in the frequency domain. Both methods require a grid
search in the frequency domain. A block-to-block processing
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approach for UAC OFDM systems was suggested by Carra-
cosa and Stojanovic [4], where the non-uniform phase offset
is tracked from one block to the subsequent block.

Recently, low complexity CFO estimators for OFDM in
UAC channel have been suggested [5] that replace the need
for exhaustive grid search. Using identical pilot tones equi-
spaced in the frequency domain results in a periodic time-
domain block signal with a period equal to the number of pi-
lot tones (the issue of the peak to average power ratio of this
type of signaling is thoroughly discussed in [5]). After retain-
ing the channel-independent part of each periodic segment,
a small-sized correlation matrix between these parts is con-
structed. One of the estimators proposed in [5] is based on de-
termining the eigenvector associated with the minimal eigen-
value of this channel-independent correlation matrix, and then
the CFO is obtained using the LS estimator given the phases
of this eigenvector.

Herein, we propose CFO estimators which not only use a
channel-independent correlation matrix [5], but also a channel-
dependent correlation matrix constructed from correlating the
channel-dependent parts of the segments of the periodic time
domain block signal. The first estimator is based solely on
this channel-dependent correlation matrix. We first determine
the eigenvector associated with the maximal eigenvalue of
this matrix, and then the CFO is estimated using a linear LS
estimator given the phases of this eigenvector. The second
estimator is a weighted linear LS estimator given the phases
of the minimal eigenvector of the channel independent corre-
lation matrix and the maximal eigenvector of the channel de-
pendent correlation matrix. Finally, the third estimator solves
a generalized eigenvalue decomposition (GEVD) problem by
considering jointly the two correlation matrices, and then per-
forming a similar second step as the previous estimators. Nu-
merical simulations indicate that the root mean square error
(RMSE) performance of the GEVD estimator is superior to
that of the other estimators for low signal to noise ratio (SNR)
and in various underwater channels. Water tank experiments
further show that the proposed estimators outperform previ-
ously suggested CFO estimators.
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2. SIGNAL MODEL

Consider a zero-padded OFDM block with time duration T
and K carriers, where the kth carrier frequency is f(k) =
f0 + k∆f , k = 0, . . . ,K − 1 and ∆f = 1/T is the carrier
spacing. TheK×1 vector of symbols is denoted by s with its
kth element defined by s(k) = ejφ(k), meaning that a phase
modulation is being used. Hereon we use the QPSK constella-
tion. We use Q pilot symbols, equi-spaced in frequency with
spacing G = K/Q, i.e., the frequency of the qth pilot carrier
is f(qG), q = 0, . . . , Q−1. The P ×1 zero-padded discrete-
time transmitted signal, where P = K + L, is r = TzpF

H
Ks,

where FK is a K × K Fourier matrix with the (m,n)th el-
ement given by 1√

K
e−j2π/K·mn, Tzp = [IK ,0K0TL]T is a

P ×K zero-padding matrix, In is the n × n identity matrix,
0n is a n×1 vector of zero elements, andL is the length of the
zero-padding. The unknown discrete-time baseband CIR rep-
resenting a multipath channel is described by the L×1 vector
h = [h(0), . . . , h(L− 1)]T . After coarse Doppler shift com-
pensation, the P × 1 received vector y that still consists of
a frequency independent residual Doppler shift component is
[3, 12, 5]

y = ΓK(ε0)HTzpF
H
Ks + n , (1)

where H is a P×P Toeplitz matrix with first column and first
row given by [hT ,0TP−L]T and [h(0),0TP−1]T , respectively,
n is a P × 1 noise vector modeled as a zero-mean circular
complex white Gaussian with covariance matrix σ2

nIP and

ΓK(ε0) = diag(1, ej
ε0
K , . . . , ej

ε0
K (P−1) (2)

where ε0 is the carrier frequency offset normalized by ∆f .
We note that when estimating the CIR using identical pilots,
the last L elements of y hold irrelevant data and thus we sim-
ply discard them instead of using the overlap-and-add opera-
tion usually used in zero padded OFDM receivers.

The problem we discuss is briefly expressed as follows:
Given the received signal, y, estimate the normalized CFO.

3. CHANNEL-DEPENDENT CFO ESTIMATOR

By using identical pilot tones, i.e. s(qG) = u, where u is one
of the possible symbols, the time domain signal is [5]

s̃(n) =

Q−1∑
q=0

1√
K
s(qG)︸ ︷︷ ︸

=u

ej
2π
Q nq +

K−1∑
k∈SD

1√
K
s(k)ej

2π
K nk

︸ ︷︷ ︸
∆
=η(n)

=
Qu√
K
δ[nmod Q] + η(n) , n = 0, . . . ,K − 1 (3)

where SD is the set of indices of the data symbols and δ[·] is
the delta function. The signal contains G peaks with absolute
values equal to Q/

√
K at times n = 0, Q, . . . ,K −Q in the

presence of a noise-like term η(n). For K � Q this noise
term is distributed as a zero mean Gaussian random variable
with variance equals to (K − Q)/K. By assuming that Q is
large enough so that η(n) is negligible compared toQu/

√
K,

and by neglecting the additive noise term contribution in (1),
we get, after substituting (3) into (1), that the vector y can be
segmented into G segments where each contains Q samples,
where the gth segment yg = y(1 + gQ : (g + 1)Q), g =
0, . . . , G− 1, is given as

yg ∼=
√
QuΓQ(ε0)hQαg(ε0) , g = 0, . . . , G− 1 (4)

where ΓQ is obtained by taking the Q × Q top left block of
ΓK , αg(ε0) = 1/

√
Ge−j

2π
G gε0 and hQ = [h, 0, . . . , 0]T is

the Q × 1 vector containing the CIR h in its first L samples.
The lastQ−L samples of yg do not contribute to the estimate,
therefore we replace it by the L× 1 vector,

ỹg ∼=
√
QuΓL(ε0)hαg(ε0) (5)

where ΓL(ε0) obtained by taking the L × L top left block
of ΓK . By collecting all data vectors in (5) we arrive to the
GL× 1 measurement vector ỹ = [ỹT1 , . . . , ỹ

T
G−1]T given as,

ỹ ∼=
√
Qu(α(ε0)⊗ ΓL)h (6)

where ⊗ is the Kronecker product, and the G × 1 unit-norm
vector α(ε0) is defined as

α(ε0) =
1√
G

[1, . . . , e−j
2π
G (G−1)ε0 ]T (7)

At this point we can formulate an LS model. Given the mea-
surement ỹ, we want to find the CIR, h, and the CFO, ε, that
minimize the cost function

L(ε,h) = ‖ỹ −
√
Qu(α(ε)⊗ ΓL)h‖2 (8)

The CIR estimate is therefore ĥ = G(α(ε0)⊗ ΓL)H ỹ. Sub-
stituting it back into (8), after a few simple steps we find that
the estimated CFO is the one that maximizes

`(ε) = αH(ε)R̂CDα(ε) (9)

where the G×G channel-dependent cross correlation matrix
is

R̂CD = YHI(1 : L, :)T I(1 : L, :)Y (10)

where I(1 : L, :) is a L × Q matrix obtained by taking the L
first rows of the Q×Q identity matrix, and the Q×G matrix
Y containing all the G segments of the block signal is

Y = [y0, . . . ,yG−1] (11)

Instead of estimating the CFO by performing an exhaustive
search over (9) we suggest to perform a two step estimation
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approach. First, we estimate the vector α which maximizes
(9). This vector is the eigenvector umax associated with the
maximal eigenvalue of R̂CD. Then, given the phases of this
principal eigenvector, we can estimate the CFO using the fol-
lowing LS model

arg(umax(R̂CD)) ∼= −
2π

G
gε (12)

where g = [0, 1, . . . , G − 1]T . The channel-dependent CFO
estimate is

ε̂ = − G

2π‖g‖2
arg(uTmax(R̂CD))g (13)

The computational complexity of this process is O(G2L).
Notice that the first L taps are selected due to their high pi-
lot signal to noise ratio. For most fading channels, a smaller
number than L will be sufficient.

4. LINEAR COMBINATION OF CFO ESTIMATES

In [5] it is shown that the CFO can be estimated in a com-
plementary way to the previous estimate by looking for the
vector α that minimizes [5]

`
′
(α) = αHR̂CIα (14)

where the G × G channel-independent cross correlation ma-
trix is

R̂CI = YHI(L+ 1 : Q, :)T I(L+ 1 : Q, :)Y (15)

where I(L + 1 : Q, :) is defined similar to I(1 : L, :). The
vector α which minimizes (14) is the eigenvector umin asso-
ciated with the minimal eigenvalue of R̂CI . The estimated
CFO can then be solved using the phases of this eigenvector
similarly to (13).

We suggest to use the phases of both umin and umax to
determine the CFO using a joint LS model given as[

arg[umax(R̂CD)]

arg[umin(R̂CI)]

]
∼=
[
− 2π
G g

− 2π
G g

]
ε (16)

The CFO is determined as the one that minimizes the follow-
ing weighted LS optimization problem

ε̂ = argmin
ε
{β · ‖ arg[umin(R̂CI)] +

2π

G
gε‖2

+(1− β) · ‖ arg[umax(R̂CD)] +
2π

G
gε‖2} (17)

Taking the derivative w.r.t. ε and equating the result to zero
yields that the combined CFO estimate is

ε̂ = − G

2π‖g‖2
(β arg(umin(R̂CI))

+(1− β) arg(umax(R̂CD)))Tg (18)

where 0 ≤ β ≤ 1. As might be expected, the combined
estimator is an arithmetic average between both estimations.
For β = 0.5 we get the LS solution. A natural selection of
weights is β = L/Q, which accounts for the relative number
of samples used for each estimate.

5. GENERALIZED EVD-BASED ESTIMATOR

The channel-dependent cost function attempts to find a vec-
tor α that maximizes R̂CD, whereas the channel-independent
cost function attempts to find the same vector α that mini-
mizes the complementary matrix R̂CI . Instead of solving two
independent eigenvalue decomposition problems, we suggest
to solve a single eigenvalue decomposition problem by con-
sidering jointly the channel-dependent data and the channel-
independent data. In other words, a combined model can be
proposed to maximize these quantities ratios. i.e. the opti-
mization problem can be rephrased as a Rayleigh quotient

`
′′
(α) = argmax

α

αHR̂CDα

αHR̂CIα
(19)

We thus encounter a well-known generalized eigenvalue prob-
lem, which is equivalent to the simple problem of finding the
eigenvalue umax associated with the maximal eigenvalue of
the matrix R̂−1CIR̂CD. Solving an LS optimization problem
as with the previous methods but now given the phases of
umax(R̂−1CIR̂CD) yields that the generalized eigenvalue de-
composition (GEVD) estimate of the CFO is

ε̂ = − G

2π‖g‖2
arg(umax(R̂−1CIR̂CD)T )g (20)

which involves similar computation complexity as the previ-
ous estimates.

6. SIMULATIONS AND REAL DATA RESULTS

We evaluate the performance of the proposed estimates using
numerical simulations and by examining the results of exper-
iments in a water tank.

In the simulations we used OFDM blocks of K = 2048
QPSK symbols with G = 8 and bandwidth of W = K∆f =
12.5 KHz. The normalized CFO was fixed to ε0 = 0.2. First,
we considered a channel with L = 100 taps, corresponding
to a delay spread of 8 ms with 15 paths of descending ampli-
tudes. We evaluate the RMSE of the CFO using 5 estimates:
1) Channel dependent (β = 0); 2) Channel independent from
[5] (β = 1); 3) Weighted LS with equal weights (β = 0.5);
4) Weighted LS (β = L/Q), and 5) GEVD-based. Fig. 1
shows the RMSE performance (the simulated CIR presented
at the bottom is fixed for all trials) versus the SNR in terms
of Eb/N0. Each value represents statistics of 10,000 realiza-
tions of noise and data symbols. Clearly, the GEVD based es-
timator achieves the best results, outperforming the estimate
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proposed in [5] in low SNR. As expected, when applying the
channel dependent estimate (β = 0), a noise floor caused by
the data tones is reached for high SNR.

We further investigate the effect of the CIR delay spread
on the estimate. Fig. 2 shows the RMSE of the CFO estimates
as a function of the channel delay-spread in terms of L/Q for
a fixed SNR of 3 dB. As expected, the performance degrades
for long channels. It seems that the GEVD estimate illus-
trates the best performance for all scenarios with price of mi-
nor degradation in computational complexity, caused by the
G×G matrix inversion needed (since G is typically small).
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Fig. 1. CFO RMSE versus the SNR.
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Pool trials were held in a 10m × 20m × 10m water tank.
The receiving and transmitting transducers were placed at the
center of the pool 2m apart at 3m depth. Since the typical
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Fig. 3. CFO estimates of dynamic scenarios in a water tank.

CIR in the tank is fairly long, we used K = 2048, G = 4 and
L = 250, i.e. L/Q = 0.49. A total of 1400 OFDM blocks
were transmitted, including both static and motion scenarios.
We compared the proposed methods with the state of the art
null carriers CFO estimation [3], where 114 equi-spaced null
carriers were used. Fig. 3 shows the CFO estimates of two
packets of motion scenarios. In each set a different displace-
ment was performed. In the top plot, the displacement was
large, as can be seen all methods follow the harmonic os-
cillation of the transducer in the water. The bottom plot il-
lustrates the results of much subtle displacements. Here we
show the differences between the best performing methods
(as expected, the channel-dependent estimator in Section 3
produced poor results due to the long delay spread).

7. CONCLUSION

We have proposed EVD-based CFO estimators for OFDM in
UAC channels. The first uses the phase of the maximal eigen-
vector of the channel-dependent correlation matrix. The sec-
ond solves a joint LS problem given the first estimator and the
phase of the minimal eigenvector of the channel-independent
correlation matrix. The third employs the phases of the max-
imal eigenvector by solving a generalized eigenvalue decom-
position problem given the channel-independent and channel-
dependent correlation matrices. Simulations, as well as pool
trials, show that the second estimator outperforms the other
suggested estimator and the previously published estimators.
Further analysis, which explains the improved performance
in low SNR together with relating the methods formulation to
optimizations problems, are in the focus of future research.
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