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ABSTRACT

In this paper, the estimation of a narrowband time-
varying channel under the practical assumptions of finite
block length and finite transmission bandwidth is inves-
tigated. It is shown that the signal after passing through
a time-varying narrowband channel, under these assump-
tions, reveals a particular low-rank structure. The rank in
this structure is governed by the number of dominant paths
in the channel. Moreover, it is shown that this low-rank
structure can be represented as a summation of few rank-
one atoms (matrix) that are fully described by the channel
and leakage key parameters. To estimated the channel,
a novel approach based on minimization of atomic norm
using measurements of signal at time domain is proposed.
Numerical results show that the performance of proposed
algorithm is independent of the leakage effect and the
new method can achieve significant gains over previously
proposed methods.

Index Terms— Narrowband time-varying channels,
delay-Doppler leakage estimation, low-rank matrix recov-
ery, atomic norm, convex optimization.

1. INTRODUCTION

Wireless communications have enabled intelligent traf-
fic safety [11, 3], automated robotic networks, underwater
surveillance systems [8, 2], and many other useful tech-
nologies. In all of these systems, establishing a reliable,
high data rate communication link between the source and
destination is essential. To achieve this goal, the system
requires accurate channel state information to equalize the
distortion from the transmit signal and recover the massage
with minimum error at the destination.

One of the well-known approaches to acquire the chan-
nel state information is to probe the channel in time/frequency
with known signals and reconstruct the channel response
from the output signals (see [10, 14] and references
therein). Least-squares (LS) (or linear regression) and
Wiener filters [9, 16] are classical examples of this ap-
proach. However, these methods do not take advantage of
rich, intrinsic structures of wireless communication chan-
nels in their estimation process. More recent approaches
have tried to exploit the simple structures of channels, such
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as sparsity [15, 1], group-sparsity or mixed/hybrid sparse
and group sparsity structures [12, 13, 3] using compressed
sensing/sparse approximation algorithms. However due
to practical communication system constraints such as fi-
nite block length and finite transmission bandwidth, the
inherent sparsity of the channel decreases dramatically.
This effect is defined as the channel leakage in [15, 3]. It
has been shown that the performance of CS methods are
significantly degraded due to the leakage effect [3, 15].

In this work, we show that under above practical com-
munication systems constraints, the transmit signal after
passing thought a time-varying narrowband channel can be
represented as summation of rank-one matrices with par-
ticular structure. Each rank-one matrix in this representa-
tion can be characterized by the channel and the pulse leak-
age key parameters. We define a set of atoms (normable
functions) to describe the set of rank-one matrices in our
channel estimation problem. Each element in this set is
a rank-one matrix whose elements are described by un-
known channel and leakage parameters. Utilizing this set
of atoms, we show that the channel estimation problem can
be stated as a parametric low-rank matrix recovery prob-
lem. In prior work, we have shown that this problem is,
in general, a non-convex optimization problem [6]. How-
ever, in this work, motivated by the convex recovery for
inverse problem via atomic norm heuristic [4, 5] , we de-
velop a recovery algorithm based on the minimization of
the atomic norm of proposed set of atoms to enforce the
channel model and leakage structures via a convex opti-
mization problem. We analyze the algorithm to show that
the global optimum can be recovered in the absence of
noise. Moreover, we propose a method to find the opti-
mal solution of the channel estimation problem. Perfor-
mance of the algorithm is demonstrated by numerical ex-
periments.

The rest of this paper is organized as follows. Sec-
tion 2 derives the communication system model which is
used in Section 3 to derive the discrete time observation
model and introduce the low-rank recovery problem using
atomic norm heuristic. Section 4 describes the proposed
algorithm using semidefinite optimization to find the op-
timal solution of channel estimation problem. Section 5
is devoted to discussion and numerical results, and finally
Section 6 concludes the paper.
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2. SYSTEM MODEL
We assume that the transmitted signal x(t)1 is gener-

ated by the modulation of a pilot sequence x[n] onto the
transmit pulse pt(t), x(t) =

∑+∞
n=−∞ x[n]pt(t − nTs),

where Ts is the sampling period. The signal x(t) is trans-
mitted over a linear, time-varying channel. The received
signal y(t) can be written as,

y(t) =
∫ +∞

−∞
h (t, τ)x(t− τ) dτ + z(t). (1)

Here, h(t, τ) is the channel’s time-varying impulse re-
sponse, and z(t) is a Gaussian noise. A common model
for the narrowband time-varying impulse response is as
follows,

h(t, τ) =
p0∑
k=1

ηkδ(τ − tk)ej2πνkt, (2)

where p0 denotes the number of dominant path in the chan-
nel, ηk, tk, and νk denote the kth channel path’s attenua-
tion factor (gain), delay, and Doppler shift, respectively.
At the receiver, y(t) is converted into a discrete-time sig-
nal using an anti-aliasing filter pr(t). That is,

y[n] =
∫ +∞

−∞
y(t)pr(nTs − t) dt. (3)

We assume that pt(t) and pr(t) are causal with support
[0, Tsupp). Under the reasonable assumption νmaxTsupp �
1, where νmax = max (ν1, . . . , νp0) denotes the Doppler
spread of the channel [11], and if we let p(t) = pt(t) ∗
pr(t), we can write the received signal after filtering and
sampling as [3],

y[n] =
p0∑
k=1

m0−1∑
m=0

ηkp(mTs − tk)e−j2πνktk

x[n−m]ej2πνk(n−m)Ts + z[n] (4)

for n ∈ {m0, · · · , nT +m0 − 1}, where m0 denotes the
maximum discrete delay spread of the channel, i.e., m0 =[
τmax
Ts

]
where τmax is the delay spread of the channel, and

nT denotes the total number of training samples. Here
z[n]2 is a sequence of i.i.d circularly symmetric complex
Gaussian random variables with variance σ2

z . Note that
pulse leakage effect is due to the non-zero support of pulse
p(·). This will increase the number of nonzero coefficients
of observed leaked channel at receiver side (for more de-
tails, see [3, 15]).

3. CHANNEL ESTIMATION
In the time-varying doubly selective channels estima-

tion problem, the main goal is the estimation of the atten-
uation, delay, and Doppler parameters of the channel, i.e.,

1Note that this signal model is quite general, and encompasses OFDM
signals as well as single-carrier signals.

2Without loss of generality, if we assume that pr(t) has a root-Nyquist
spectrum with respect to the sample duration Ts, which implies that z[n]
is a sequence of i.i.d circularly symmetric complex Gaussian random vari-
ables.

ηk, tk, νk, respectively for 1 ≤ k ≤ p0, in order to equal-
ize their effect on the transmitted signal. These parameters
are estimated via measurement the model derived in (4),
where both the transmitted signal x[n] and the received sig-
nal y[n] are known during the training signal transmission.

3.1. Problem Statement

Define fk(t) = p(t− tk)e−j2πνkt, then we can rewrite
(4) as

y[n] =
p0∑
k=1

η̄k

(
m0−1∑
m=0

fk(mTs)x[n−m]
)
ej2πνknTs

=
p0∑
k=1

η̄kgk[n]ej2πν̄kn, (5)

where η̄k = ηke
−j2πνktk , ν̄k = νkTs ∈ [0, 1), and

gk[n] =
m0−1∑
m=0

fk(mTs)x[n−m] = xTnfk, (6)

where

fk = [fk (0Ts) , · · · , fk ((m0 − 1)Ts)]T (7)

and

xn = [x [n] , x [n− 1] · · · , x [n− (m0 − 1)]]T . (8)

Now, if we stack gk[n] for m0 ≤ n ≤ nT + m0 − 1 in a
vector as gk = [gk[m0], · · · , gk[nT +m0 − 1]]T , we can
write

gk = XXXfk, (9)

where XXX is a nT -by-m0 matrix and its i-th row equals to
xTi+m0−1 defined in Equation (8). In wireless communi-
cation systems typically nT > m0 or, that is, all gk live
in a common low-dimensional subspace spanned by the
columns of a known nT × m0 matrix XXX with nT > m0.
We assume that ‖fk‖2 = 1 without loss of generality. Us-
ing Equation (6), recovery of gk is guaranteed if fk can be
recovered. Therefore, the number of degrees of freedom in
(5) becomes O(m0p0), which is smaller than the number
of samples nT when p0,m0 � nT . Applying Equation
(6), we can rewrite (5) as

y[n] =
p0∑
k=1

η̄ke
j2πnν̄kxTnfk. (10)

Defining a(ν) =
[
e−j2πm0ν · · · e−j2π(nT +m0−1)ν]T ,

we have

y[n] =
p0∑
k=1

η̄ka(νk)Hen−m0+1x
T
nfk

= trace
(
en−m0+1x

T
n

p0∑
k=1

η̄kfka(νk)H
)

=
〈

p0∑
k=1

η̄kfka(νk)H ,xneTn−m0+1

〉
, (11)
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for n = m0, · · · , nT + m0 − 1, where we have defined
〈XXX,YYY〉 = trace(YYYHXXX) and en, 1 ≤ n ≤ nT , are a
canonical basis for RnT×1. We see that (11) leads to a
parametrized rank-p0 matrix recovery problem, which we
write as

y = Π(HHHo),

where the linear operator Π : Cm0×nT → CnT×1

is defined as [Π(HHHo)]n =
〈
HHHo,xne

T
n

〉
, with HHHo =∑p0

k=1 η̄kfka(νk)H .

3.2. Structured Estimation

Since the number of terms in Equation (10), p0 (the
number of dominant paths in the channel), is small. We
use the atomic norm to promote this structure. Define the
atomic norm associated with the following set of atoms

A =
{
fa(ν)H : ν ∈ [0, 1), ‖f‖2 = 1,f ∈ Cm0×1}

as

‖HHHo‖A = inf {t > 0 : HHHo ∈ tconv(A)} (12)

= inf
η̄k,νk,‖fk‖2=1

{∑
k

|η̄k| : HHHo =
∑
k

η̄kfka(νk)H
}
.

Remark 1. The atomic representation in Equation (12) for
matrix HHHo, i.e., HHHo =

∑
k η̄kAAA (fk, νk) =

∑
k η̄kfka(νk)H ,

not only captures the functional forms of its elements, but
also enforces the rank-one constraint on each terms in the
summation, i.e., rank (AAA (fk, νk)) = 1.

To enforce the sparsity of the atomic representation or
low-rank representation of received signal, we solve

minimize
HHH

‖HHH‖A s.t. y = Π(HHH). (13)

3.3. Optimality and Uniqueness

The dual of the optimization problem in (13), using
standard Lagrangian analysis can be written as

maximize
λ

Re {{〈λ,y〉}} s.t. ‖Π∗ (λ)‖∗A ≤ 1, (14)

where Π∗ (λ) =
∑
k λ(k)xkek−m0+1 is the adjoint op-

erator of Π and ‖·‖∗A denotes the dual norm of the atomic
norm. Therefore, we have

‖Π∗ (λ)‖∗A = sup
‖ΘΘΘ‖Π≤1

Re {〈Π∗ (λ) ,ΘΘΘ〉} (15)

= sup
ν∈[0,1),‖f‖2=1

Re
{〈

Π∗ (λ) ,fa(ν)H
〉}
.

Equality in (15) holds, since the set
{
fa(ν)H

}
ν,f

cov-
ers all the extremal points of atomic norm unit ball, i.e.,
{ΘΘΘ : ‖ΘΘΘ‖A ≤ 1}. Now if we define µ(ν) = Π∗ (λ)a(ν),
we have

‖Π∗ (λ)‖∗A = sup
ν∈[0,1),‖f‖2=1

Re
{
fHµ(ν)

}
≤ sup
ν∈[0,1)

‖µ(ν)‖2. (16)

Now, if we consider the following condition that

‖µ(ν)‖2 ≤ 1, (C-1)

then we can rewrite the optimization problem in (14) as
follows:

maximize
λ

Re {〈λ,y〉} subject to ‖µ(ν)‖2 ≤ 1, (17)

where

µ(ν) = Π∗ (λ)a(ν) =
nT +m0−1∑
n=m0−1

λ(n−m0 + 1)ej2πnνxn.

(18)

Similarly, we have

Re {{〈λ,y〉}} = Re {〈Π∗ (λ) ,HHH〉}

= Re
{〈

Π∗ (λ) ,
∑
k

η̄kfka(νk)H
〉}

=
∑
k

Re
{
η̄∗kf

H
k µ (νk)

}
. (19)

Now, if we also assume that

µ(νk) = sign (η̄k)fk, (C-2)

for k ∈ {1, · · · , p0}, then we have Re {{〈λ,y〉}} =∑
k |η̄k| ≥ ‖HHH‖A. Moreover, using the Hölder inequality

and Equation (19) we know that

Re {{〈λ,y〉}} ≤ ‖Π∗ (λ)‖∗A‖HHH‖A ≤ ‖HHH‖A.

Therefore, if condition (C-2) holds, then Re {{〈λ,y〉}} =
‖HHH‖A. In other words, under conditions (C-1) and (C-2)
the solution of the primal (Equation (13)) and dual (Equa-
tion (14)) optimization problems introduce zero duality
gap. Thus, HHHo and λ are optimal solutions of the pri-
mal and dual optimization problem. Furthermore, using
proof by contradiction, we can see that condition (C-2)
ensures the uniqueness of optimal solution. Suppose
ĤHH =

∑
k η̂kf̂ka(ν̂k)H is another optimal solution. Since

ĤHH and HHHo are different, there are some ν̂k that are not in
support of HHHo. Define Vo as the support of HHHo. Then, we
have

Re {{〈λ,y〉}} = Re
{〈

Π∗ (λ) , ĤHH
〉}

= Re
{〈

Π∗ (λ) ,
∑
k

η̂kf̂ka(ν̂k)H
〉}

=
∑
k∈Vo

Re
{
η̄∗kf

H
k µ (νk)

}
+
∑
k/∈Vo

Re
{

ˆ̄η∗kf̂
H

k µ (ν̂k)
}

≤
∑
k∈Vo

η̄∗k

∥∥∥fHk ∥∥∥2
‖µ (νk)‖2 +

∑
k/∈Vo

ˆ̄η∗k
∥∥∥f̂Hk ∥∥∥2

‖µ (ν̂k)‖2

<
∑
k∈Vo

η̄∗k +
∑
k/∈Vo

ˆ̄η∗k =
∥∥∥ĤHH∥∥∥

A
,

which is in contradiction of the optimality of ĤHH.
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4. PROPOSED ESTIMATION ALGORITHM
We observed that considering conditions (C-1) and

(C-2), the optimization problems in (13) and (17) both
recover the optimal solution of our channel estimation
problem. Hence, after we evaluate the dual parameters
λ by solving one of these optimization problems, we can
construct the function µ (ν) in (18). Then, we can use it
to estimate the Doppler parameters by enforcing condition
(C-2), as we know that |µ (νk)| = 1 for k ∈ {1, · · · , p0}.
Towards this goal, we need to find the roots of the follow-
ing polynomial

Q(ν) = 1− ‖µ(ν)‖22 = 1− µ(ν)Hµ(ν), (20)

which are equal to {νk}p0
k=1. After estimation of {νk}p0

k=1,
we can substitute them in (10) to achieve a linear system
of equations to evaluate {η̄kfk}

p0
k=1. Note that we do not

need to evaluate the values of η̄k and fk separately in order
to equalize the channel effect. As seen in (10), to construct
an equalizer we just require η̄kfk for 1 ≤ k ≤ p0.

4.1. Solving the Optimization Problem in (13)

From [4], we know that the convex hull of the set of
atoms A can be characterized by a semidefinite program.
Therefore ‖HHH‖A admits an equivalent SDP representation.

Proposition 1 (see i.e., [4]). For any HHH ∈ Cm0×nT ,

‖HHH‖A = inf
z,WWW

{
1

2nT
trace (Toep(z) + nTWWW) :

∣∣∣∣∣∣∣∣[Toep(z) HHHH

HHH WWW

]
� 0
}
, (21)

where z is a complex vector whose first element is real,
Toep(z) denotes the nT × nT Hermitian Toeplitz matrix
whose first column is z, and WWW is a Hermitian m0 ×m0
matrix.

Therefore, we can use an efficient available SDP solver
software such as CVX [7], to solve the optimization prob-
lem in (13) via the above SDP representation and also eval-
uate the dual parameter λ. For noisy measurements, we
consider

minimize
HHH

‖HHH‖A s.t. ‖y −Π(HHH)‖2 ≤ σ
2
z .

5. NUMERICAL SIMULATIONS
In this section, we perform several numerical experi-

ments to validate the performance of the proposed channel
estimation algorithm. We construct a narrowband time-
varying channel based on the model given in (2). We
first generate the channel delay, Doppler, and attenuation
parameters randomly. In all of these experiments, we
consider p0 = 3 and m0 = 10. The delay and Doppler
parameters are generated via uniform random variables
and channel attenuation parameters are generated using a
Rayleigh random variable. The transmit training signal
x = [x[1], x[2], · · · , x[nT + n0 − 1]]T is generated using
a normal random variable with zero mean and unit vari-
ance. Moreover, the transmit and received pulse shapes
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are considered as Gaussian pulses with 50% window’s
support. Results in Fig.1 depict the normalized mean
squared error (NMSE) correspond to the estimation of the
leaked channel’s gains, i.e., {η̄fk}

p0
k=1 using the proposed

algorithm for nT = 48, 64, and 80. It is clear that by
increasing the number of measurements the performance
of the proposed algorithm gets better. In Fig.1, there is
another curve, which present the performance of l1-based
sparse approximation (SA) method for the estimation of
channel with nT = 80 (see [1, 3]). In Fig.1, we observe
that our proposed method achieves much better results,
due to exploiting the most of channel structures compared
with l1-based SA method that only consider element-wise
sparsity of channel coefficients. In Fig.2, the results show
that the NMSE of our proposed algorithm for estimation
of Doppler parameters. Results in both Figures 1 and 2
indicate that our algorithm is robust to the noise. In Fig.
2, for SNR ≥ 5 dB, we see that for all values of nT , the
proposed algorithm can estimate the Doppler parameters
with at most 0.01 (normalized) error.

6. CONCLUSIONS

In this work, we have proposed a new method to esti-
mate the time-varying narrowband channels by promoting
most of received signal structures via a proper set of atoms.
We showed that the received signal measurements in time
domain follow a parametric low-rank structure due to the
pulse shape leakage and the channel model. We proposed
a convex optimization problem to estimate the channel by
promoting the low-rank structures via minimization of the
atomic norm. Numerical results showed that the proposed
algorithm can provides a performance (in SNR sense) with
5− 8 dB improvement in average in SNR> 5 compared to
l1-based SA method.
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