
THE POWER-OJA METHOD FOR DECENTRALIZED SUBSPACE ESTIMATION/TRACKING

Sissi Xiaoxiao Wu†, Hoi-To Wai†, Anna Scaglione† and Neil A. Jacklin‡

†School of Electrical, Computer and Energy Engineering, Arizona State Univ., Tempe, AZ, USA
‡Northrop Grumman Mission Systems, McClellan, CA

ABSTRACT

This work proposes a decentralized and adaptive subspace estima-
tion method, called the Power-Oja (P-Oja) method. Existing decen-
tralized subspace tracking algorithms have slow convergence rate or
are unable to adapt to time varying statistics. To resolve these issues,
the P-Oja method is developed by combining the power method with
Oja’s learning rule. Our key innovation lies on the design of a modi-
fied objective function with enhanced spectral gap property. This al-
lows the P-Oja method to track the principal subspace more quickly
with a finite number of samples. Interestingly, the resulting method
coincides with the conventional Oja’s learning rule in some special
cases. To enable decentralized signal processing, we further demon-
strate that the proposed method can be implemented by using a gos-
sip algorithm. Our simulation results show that the proposed P-Oja
outperforms the conventional Oja’s method in terms of estimation
accuracy, and the power method in terms of tracking performance.
The effect of the communication graph on the tracking performance
is also studied.

Index Terms— Massive arrays, spectrum sensing, subspace es-
timation, gossip algorithm.

1. INTRODUCTION

In this paper, we consider the problem of estimating cooperatively
the signal subspace of transmitters that are measured by several sep-
arate antennas, forming a massive array. Our concept can be con-
sidered to be a possible architecture for distributed spectrum sensing
in the fronthaul of a 5G network, where a virtualized physical layer,
running over a Cloud Radio Access Network, will process measure-
ments taken from several Remote Radio Heads, substituting the tra-
ditional processing made by 4G base station servers [1, Section 4.1].
A specific example of the application is depicted in Fig. 1 (Left) and
a possible system architecture is provided in Fig. 1 (Right). The
massive arrays (antennas) of sensors are used cooperatively to esti-
mate the principal subspace of the signal of primary WiFi users in
a non-synchronized manner. The secondary 5GPP users can project
their signal onto the primary users’ orthogonal subspace and thus
reuse the spectrum without interfering with the WiFi users [2, 3].
Such an application requires a subspace estimation and tracking al-
gorithm with high accuracy, low latency and adaptive to variation of
the signals’ statistics. Since the sampling data of the massive arrays
is huge, and users may join or leave the channel randomly, the chal-
lenge in the design of this algorithm is dealing with the curse of data
dimensionality.

Driven by the application above, this paper focuses on develop-
ing a decentralized subspace tracking algorithm. To this end, two
classical algorithms for the task are the power method [4] and the
Oja’s learning rule [5]. The power method is a batch processing
method with fast convergence, yet the method is non-adaptive and

Fig. 1. (Left) A WiFi network. (Right) Grouping antennas into sub-
arrays with distributed processors for spectrum sensing.

has a high latency. On the other hand, the Oja’s learning rule is an
adaptive method derived from the stochastic gradient descent (SGD)
method. The method is commonly used for tracking time varying
statistics as the stochastic gradients are obtained from only one sam-
ple of the signal, yet it may suffer from slow convergence as it is
essentially a first order optimization method.

Extensions to the classical algorithms above can be found in the
literature. For example, our previous work [6] developed a decentral-
ized version of the Oja’s learning rule and analyzed its convergence;
[7] considered a decentralized power method and [8] analyzed the
convergence; [9] adopted similar principle to develop stochastic al-
gorithms for related problems; [10, 11] performed convergence rate
analysis for the algorithms. Recently, other authors [12] have con-
sidered using accelerated gradient techniques to speed up the con-
vergence rate of the subspace estimation. To our knowledge, none
of the previous works have considered the tracking power method.

This paper proposes the Power-Oja (P-Oja) method which inte-
grates the power method with Oja’s learning rule. Our algorithm is
motivated from a modified objective function for principal subspace
tracking with better convergence properties, whose optimal solution
is the p-D principal subspace. We derive an SGD algorithm for tack-
ling the stochastic optimization and draw connections between the
power method and part of the SGD steps involved. These SGD steps
are replaced by the power method subroutine to accelerate conver-
gence. We note that the P-Oja method is a mini-batch method for
which the batch size can be adjusted to trade-off between subspace
tracking adaptivity and accuracy. We demonstrate that the P-Oja
computations can be distributed to different processor units by em-
ploying the gossip protocol done in a similar fashion as [6, 7]. Our
numerical results show that P-Oja demonstrates much better tracking
performance than state-of-the-art methods.

Notations — We use the standard notations in this paper. For
example, ‖·‖ is the Euclidean norm, (·)H is the Hermitian transpose.
λi(R) denotes the ith largest eigenvalue of R.

3524978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

2. PROBLEM STATEMENT

Consider a non-stationary stochastic process r(t) ∈ CN with zero-
mean and covariance matrix:

R(t) = E[r(t)rH(t)] ∈ CN×N . (1)

This paper is concerned with tracking the top p-D subspace of r(t)
by tackling the non-convex, stochastic optimization:

min
U∈CN×p

ft(U) := E
[
‖r(t)−UUHr(t)‖2

]
, ∀ t ≥ 1 , (2)

where we have relaxed the manifold constraint on U which is a point
on the Grassmannian.

Notice that the covariance matrix R(t) can only be estimated
from the samples {r(t)}t≥1. Let T ⊂ {1, 2, ...} be a sampling set.
We define the corresponding sampled covariance as:

R̂(T) := |T |−1∑
s∈T r(s)rH(s) . (3)

In this paper, we will often work with the following stochastic ap-
proximation to the objective function f(U):

f̂(U ; Tτ) := Tr
((

UUHUUH − 2UUH
)
R̂(Tτ)

)
, (4)

where Tτ ⊂ {1, 2, ...} is the set of observations made during the τ th
batch. If the stochastic process r(t) is stationary for all t ∈ Tτ , then
E[f̂(U ; Tτ)] = ft(U). When the batch set Tτ is large, f̂(U ; Tτ) is
a good approximation to the objective function ft(U).

Conventional algorithms for tackling (2) include the Oja’s learn-
ing rule and the power method. However, the former is an adaptive
algorithm which needs a fine step-size to track the right descent di-
rection, while the latter is a batch algorithm, which requires estimat-
ing the covariance as a whole.

3. PROPOSED TRACKING ALGORITHM

The Power-Oja (P-Oja) method combines the power method with
Oja’s learning rule. This section focuses on the centralized imple-
mentation, while the decentralized implementation will be discussed
in Section 4. To fix ideas, let us describe the power method and the
Oja’s learning rule as follows.

Power method (PM) — Let Tτ be the τ th batch of samples. In
the power method, we first generate a random vector as an initial
point ũ1(1, τ) and perform this update at the `th power iteration:

ũ1(`+ 1, τ) = R̂(Tτ) ũ1(`, τ), ∀ ` ≥ 1 . (5)

For some large L, the vector û1(τ) := ũ1(L,τ)

‖ũ1(L,τ)‖ converges to the

top eigenvector of R̂(Tτ). To obtain the kth largest eigenvector of
R̂(Tτ) for k ≥ 2, we proceed in a similar manner as the first eigen-
vector. We generate a random vector as our initial point ũk(1, τ),
from which we remove the (k−1) previously found eigenvectors by
the following procedure:

ũk(`+ 1, τ) = R̂(Tτ) ũk(`, τ) ∀` = 1, ..., L, (6)

−
∑k−1
j=1 (ûj(τ))H

(
R̂(Tτ) ũk(`, τ)

)
ûj(τ) ,

ûk(τ) := ũk(L, τ)/‖ũk(L, τ)‖ . (7)

The matrix ÛPM (τ) := [û1(τ) û2(τ) . . . ûp(τ)] denotes the final
solution found using the power method.

It is well known that the power method converges at a geomet-
ric rate [4]. The number of power iterations needed, L, is moderate.
That said, when the process r(t) is non-stationary, one may only
take a small batch size, i.e., |Tτ | � ∞. This results in a poor ap-
proximation for R̂(Tτ) to R(t) and a degraded performance.

Oja’s learning rule — Unlike the power method, the Oja’s learn-
ing rule is an adaptive algorithm developed from the stochastic gra-
dient descent (SGD) algorithm for (2) and is more suitable for the
subspace tracking application. The Oja’s learning rule works with
one sample of r(t) at a time. In particular, let ÛOja(t) ∈ CN×p be
an estimate of U(t) at iteration t, we perform the updates:

ÛOja(t+ 1) = ÛOja(t)− γt∇f̂(ÛOja(t); {t}) , (8)

where γt > 0 is a step size and∇f̂(ÛOja(t); {t}) is the gradient of
f̂(U ; {t}) taken at U = ÛOja(t), evaluated as:

∇f̂(Û(t), {t}) = −2r(t)rH(t)Û(t) (9)

+ r(t)rH(t)Û(t)ÛH(t)Û(t) + Û(t)ÛH(t)r(t)rH(t)Û(t) .

Due to the non-convex nature of (2), the global convergence of Oja’s
learning rule has remained elusive. Most of the available results are
focused on the special cases with stationary r(t). For example, the
authors in [10] proved that when p = 1 and γt = c/t, then (8)
returns the top eigenvector of R as t → ∞ at a sub-linear rate of
O(1/t); [5, Theorem 2] have proven if

∑
t γt = ∞,

∑
t γ

2
t < ∞,

then (8) converges almost surely to the principal p-dimensional sub-
space for general p, yet the convergence rate is not given.

Nevertheless, the Oja’s learning rule is often used when the pro-
cess r(t) is non-stationary. To avoid getting stuck at the previous
subspaces, a heuristic is to set γt to be a small constant such that the
newly observed samples are sufficiently represented.

3.1. The Power-Oja (P-Oja) method

We describe the Power-Oja (P-Oja) method in the following. A main
feature of the proposed method is that it allows one to trade-off be-
tween the fast convergence of PM and the tracking ability in the
Oja’s learning rule.

To describe the P-Oja method, we letL ≥ 1 be a fixed parameter
and consider the following modified stochastic approximation of the
objective function in (2):

f̂POja(U ; T) = Tr
((

UUHUUH − 2UUH
)

(R̂(T))L
)
. (10)

The function above differs from (4) by taking the Lth power of the
sampled covariance R̂(T). There are several motivations to con-
sider the modified objective (10).

First of all, it can be checked that R̂(T) has the same top p-
dimensional principal subspace as that of (R̂(T))L. As such, min-
imizing f̂POja(U ; T) and f̂(U ; T) yield the same optimal solution.
Secondly, the Lth powered sample covariance (R̂(T))L has a better
spectral gap than R̂(T), i.e.,

σp((R̂(T))L)− σp+1((R̂(T))L)

σp((R̂(T))L)
>
σp(R̂(T))− σp+1(R̂(T))

σp(R̂(T))
,

as we notice that σp((R̂(T))L) = σp(R̂(T))L, where σp(R) de-
notes the pth largest singular value of R. As seen in the analysis
of [10], the size of the spectral gap σp((R̂(T))L)−σp+1((R̂(T))L)

3525

is an important factor in determining the convergence speed of sub-
space estimation/tracking algorithms.

To reduce the variance of the top p-dimensional subspace of
R̂(T) and thus the bias from R(T) for the Lth powered sample
covariance (R̂(T))L, we take a batch processing approach in the
P-Oja method. Specifically, we set a batch size to T and define
T1 = {1, ..., T}, T2 = {T + 1, ..., 2T}, We then track the sub-
space in a batch by batch manner. Notice that in doing so we assume
that the stochastic process r(t) is stationary for the samples within
a batch. Now, let us apply the SGD method on the modified objec-
tive (10). Considering the τ th batch, we observe that the gradient of
f̂POja(·; ·) at ÛPOja(τ) can be evaluated as

∇f̂POja(ÛPOja(τ); Tτ) = (11)

− 2(R̂(Tτ))LÛPOja(τ) + (R̂(Tτ))LÛPOja(τ)ÛH
POja(τ)ÛPOja(τ)

+ ÛPOja(τ)ÛH
POja(τ)(R̂(Tτ))LÛPOja(τ) .

Importantly, we notice that (R̂(Tτ))LÛPOja(τ) is akin to performing
L rounds of the power iterations on ÛPOja(τ). As such, we propose
to replace this by the power method described in Eq. (5)–(7). In
particular, let us denote the output from Eq. (5)–(7) as:

UPM (τ) = PM
(
{r(s)}s∈Tτ ; ÛPOja(τ);L

)
, (12)

where we used {r(s)}s∈Tτ to form R̂(Tτ), the subspace found in
the previous iteration ÛPOja(τ) is used to initialize the power it-
erations for each dimension of the subspace and the power itera-
tion (7) terminates after L recursions. We expect that ÛPM (τ) ≈
(R̂(Tτ))LÛPOja(τ).

Finally, the P-Oja method is given by the following iterations:

ÛPOja(τ + 1) = ÛPOja(τ)− γτ ∇̂f̂POja(ÛPOja(τ); Tτ) , (13)

where ∇̂f̂POja is the approximated gradient, evaluated as:

∇̂f̂POja(ÛPOja(τ); Tτ) = UPM (τ)ÛH
POja(τ)ÛPOja(τ) (14)

+ ÛPOja(τ)ÛH
POja(τ)UPM (τ)− 2UPM (τ) .

The P-Oja method is parameterized by L and T , where T controls
the variance in the sampled covariance R̂(Tτ) and L corresponds to
the acceleration given by the power method subroutine. It is worth
noting that when p = 1, T = 1, L = 1, the P-Oja method is reduced
into the Oja’s learning rule.

Remark: In order to adopt the unconstrained SGD algorithm, the
conventional Oja’s method does not employ any unitary constraint
on the subspace U . Hence, even if we can orthogonalize the result-
ing subspace, there is no guarantee for a rank-p subspace. In this
work, since we propose to search the descent direction by the PM, if
the samples in the batch is sufficient, we are very likely to obtain a
rank-p subspace. This is a by-product of the proposed P-Oja method.

4. DECENTRALIZED SUBSPACE TRACKING

In this section, we show that the proposed P-Oja method can be
implemented in a decentralized manner. To this end, we denote
the communication network between M processor units as an undi-
rected graph G = (V,E) such that V = {1, ...,M} and E ⊆
V ×V . The graph is assumed to be sparse (e.g., via the wiring of the
processor units and the communication hub in Fig. 1) and connected.
Furthermore, there is a doubly stochastic matrix W associated with

G such that [W]ij = 0 if and only if (i, j) /∈ E. Each processor
unit locally processes its subarray’s sampling data, and meanwhile
exchanges information with its neighbors in the graph. Armed with
this architecture, we shall demonstrate how the power method (5)–
(7) can be implemented in a decentralized manner. For brevity, we
only consider the case of p = 1.

Similar to [7], we partition the vectors r(t) = [r1(t); ...; rM (t)]

and û(`, τ) = [û1(`, τ); ...; ûM (`, τ)], where ri(t) ∈ C
N
M is the

receive signal at subarray i and ûi(`, τ) ∈ C
N
M is the estimated data

stored and computed in processor unit i. Let z0
i := rHi (t)ûi(`, τ)

and notice that z0
i can be computed locally at processor unit i. The

power iteration (5) can be expressed as:∑
s∈Tτ r(s)rH(s)û(`, τ) =

∑
s∈Tτ r(s)

(∑M
i=1 z

0
i

)
(15)

In particular, the summation
∑M
i=1 z

0
i can be obtained by the gossip

recursion:

zk+1
i =

∑M
j=1 Wijz

k
j , k = 0, 1, ...,K . (16)

We denote zKi as the ith output of the subroutine ACi({z0
j }Mj=1;K).

Using linear algebra, it can be verified that

‖zK − z̄1‖ ≤ |λ2 (W) |K‖z0 − z̄1‖ , (17)

where zK = [zK1 ; . . . ; zKM] and z̄ =
∑M
i=1 z

0
i /M . In particular,

whenK is sufficiently large, then
∑M
j=1 z

0
j ≈M ·ACi({z0

j }Mj=1;K)
for all i and the convergence rate is geometric in K [13]. Conse-
quently, we can replace the power iteration (5) by:

ûi(`+ 1, τ) =
1

|Tτ |
∑
s∈Tτ

ri(s)
(
M · ACi({z0

j }Mj=1;K)
)
, (18)

which can be computed locally at the ith distributed processor. For
general p > 1, we observe that the inner product (ûj(τ))H ūk(1, τ)
in (6), the `2-norm ‖ũk(L, τ)‖2 can be handled using a similar tech-
nique; see [6,7] for details. More formally, given a transition matrix
W and the number of gossip iteration K, we can denote the output
of the decentralized power processor by

U
i
PM (τ) = PMi

(
{r(s)}s∈Tτ , ÛPOja(τ),W ,K, L

)
∈ C

N
M
×p ,

(19)
where ÛPOja(τ) := [Û1

POja(τ); . . . ; ÛM
POja(τ)].

Finally, we describe the distributed computation of the approx-
imate gradient update (14). This can be achieved by dividing the
gradient ∇̂f̂POja(ÛPOja(τ); Tτ) intoM matrices, each expressed by:

∇̂f̂ iPOja(ÛPOja(τ); Tτ) = U
i
PM (τ)

(
ÛH

POja(τ)ÛPOja(τ)
)

(20)

+ Û i
POja(τ)

(
ÛH

POja(τ)U
1:M
PM (τ)

)
− 2U

i
PM (τ) ,

we also denote U
1ıM
PM (τ) = [U

1
PM (τ); . . . ;U

M
PM (τ)]. Like [7], in

the above, the matrices ÛH
POja(τ)ÛPOja(τ) and ÛH

POja(τ)U
1M
PM (τ)

can be computed in a decentralized manner. For example, we ob-
serve that ÛH

POja(τ)U
1:M
PM (τ) equals to the summation

∑M
i=1 Vi where

Vi = (Û i
POja(τ))HU

i
PM (τ).

We remark that the message exchanged during the gossip ex-
change stage within the power method (18) is only a scalar; while
the message exchanged in the approximate gradient (20) is a p × p
matrix.

3526

0 50 100 150
T
∞

/10

0

0.2

0.4

0.6

0.8

1
E

||
r t -

 U
es

t.
U

es
t.

H
 r

t ||
22 /E

||
r t ||

22

NOV bound
centralized P-Oja T=5
small-world graph P-Oja K=30 T=5
centralized P-Oja T=10
small-world graph P-Oja K=30 T=10
centralized Oja
small-world graph Oja K=30

Fig. 2. The normalized objective value (NOV) for a constant 2-D
signal space.

0 50 100 150
T
∞

/10

0

0.2

0.4

0.6

0.8

1

E
||

r t -
 U

es
t.
U

es
t.

H
 r

t ||
22 /E

||
r t ||

22

Fig. 3. The NOV for a variant 1-D signal space. The legend is the
same as that in Fig. 1, except for the number of gossip iterations
is now K = 10. The diamond-marked curve is the NOV for the
conventional power method.

4.1. The network topology

The performance of the proposed decentralized P-Oja method de-
pends on the accuracy of the gossip protocol. In practice, it is crucial
for us to choose a proper network topology. This can be seen in (17)
as the convergence rate of the gossip protocol depends on the second
largest eigenvalue of W . On the other hand, considering the physi-
cal location of the processor units, it is more economical to connect
the nearby units with a higher probability while the far-apart units
with a lower probability. We propose to use the small-world graph
with a proper rewiring probability. In particular, we adopt the opti-
mal constant weights [14] to construct the transition matrix, i.e.,

W = I − 2

λ1(L) + λN−1(L)
L ,

where L is the Laplacian matrix.

5. NUMERICAL SIMULATION & CONCLUSIONS

In this section, we verify the P-Oja method by numerical simula-
tions. We consider a massive array with N = 256 antennas, which
continuously receives 1500 samples of signals and tries to use dif-
ferent methods to estimate the subspace. The signal-to-noise ratio
(SNR) is set to be 20dB. The massive array is grouped to M = 64
subarrays, each equipped with four antennas. The processor units
for the subarrays form a graph with 64 nodes. In this simulation, we
adopt a degree-6 small-world graph with rewiring probability 0.2.
We calculate the normalized objective value (NOV) of (2) for both
the estimation and tracking processes under different scenarios. In
all simulations, the power iteration is L = 20. The step size γt for
the Oja’s learning rule is set to be 5 × 10−4 and for P-Oja is set to
be 0.01T in Fig. 2 and 0.04T in Fig. 3, where T is the number of
samples in one batch.

In Fig. 2, we compare the NOVs for different methods when r(t)
is stationary over the 1500 samples tested. In particular, we consider
a massive linear array, sensing two line-of-sight users with different
angles of arrivals, forming a 2-D signal space. We test different batch
size T = 5 and 10. For comparison convenience, we set the x-axis
as the sample index divided by 10, and the y-axis is the NOV. In
Fig. 2, we show both centralized and decentralized algorithms. The
NOV bound is obtained by using the true subspace. We see that, as
T increases, the convergence rate increases; e.g., see the curves for
T = 5 and T = 10. When K is sufficiently large (K = 30 in this
case), the decentralized performance will approach the centralized
one. The numerical results show that the P-Oja method converges
much faster than the Oja’s method, and the decentralized algorithms
work well under the chosen graph.

In Fig. 3, we compare the tracking performance for different
methods with a non-stationary r(t). We still consider the linear ar-
ray. However, due to the movement of the users, compared to the
first 500 samples, the direction of arrivals changes 0.3 degree and
0.6 degree for the next 500 samples and the last 500 samples, re-
spectively. Hence, we have in total three groups of 500 samples,
each of which has the same covariance matrix. Thus, the NOV
bounds are evaluated by 500 samples with the same statistic. We
see that, as T increases, the convergence rate increases; e.g., see
the curves for T = 5 and T = 10. When K = 10, the decen-
tralized and centralized methods coincide with each other. We also
plot the conventional, centralized power method as a benchmark, for
which the covariance is evaluated by 1500 samples. Apparently, the
power method cannot track the change of the covariance. Our simu-
lation results demonstrate that the proposed P-Oja can both track the
change of statistic, but converges much faster than the conventional
Oja method.

The conventional subspace estimation methods either estimate
by treating the received samples as a whole, e.g., the power method,
or update subspace sample by sample. The former provides a good
estimation performance for stationary signals, however results in a
large latency and cannot handle non-stationary signals; the latter can
track the subspace for stationary signals, however suffers from a
high error floor. This work neutralizes these two issues by propos-
ing an adaptive estimation method, i.e., the P-Oja method. The P-
Oja method combines the best features of both algorithms by using
small batches and accelerating the Oja’s learning rule with a nested
power method. Hence, it works well for non-stationary signals and
provides a better estimation NOV compared to conventional Oja’s
learning rule. Our numerical results verify the superiority of the pro-
posed method. We will provide a rigorous analysis for the P-Oja
method in our future work.

3527

6. REFERENCES

[1] 5GPP. View on 5G architecture. [Online].
Available: https://5g-ppp.eu/wp-content/uploads/2014/02/
5G-PPP-5G-Architecture-WP-July-2016.pdf

[2] E. Axell, G. Leus, E. G. Larsson, and H. V. Poor, “Spec-
trum sensing for cognitive radio: State-of-the-art and recent
advances,” IEEE Signal Process. Mag., vol. 29, no. 3, pp. 101–
116, 2012.

[3] X. Fu, N. D. Sidiropoulos, J. H. Tranter, and W.-K. Ma, “A
factor analysis framework for power spectra separation and
multiple emitter localization,” IEEE Trans. on Signal Process.,
vol. 63, no. 24, pp. 6581–6594, December 2015.

[4] G. H. Golub and C. F. van Loan, Matrix computations, 3rd ed.
Baltimore, MD: Johns Hopkins University Press, 1996.

[5] E. Oja and J. Karhunen, “On stochastic approximation of the
eigenvectors and eigenvalues of the expectation of a random
matrix,” Journal of Math. Analysis and Applications, no. 106,
pp. 69–84, 1985.

[6] L. Li, A. Scaglione, and J. H. Manton, “Distributed principal
subspace estimation in wireless sensor networks,” IEEE Jour-
nal of Sel. Topics in Signal Process., vol. 5, no. 4, pp. 725–738,
Aug 2011.

[7] A. Scaglione, R. Pagliari, and H. Krim, “The decentralized es-
timation of the sample covariance,” in Proc. Asilomar, Novem-
ber 2008, pp. 1722–1726.

[8] W. Suleiman, M. Pesavento, and A. M. Zoubir, “Performance
analysis of the decentralized eigendecomposition and ESPRIT
algorithm,” IEEE Trans. Signal Process., vol. 64, no. 9, pp.
2375–2386, May 2016.

[9] R. Arora, A. Cotter, K. Livescu, and N. Srebro, “Stochastic
optimization for PCA and PLS,” in Allerton, 2012.

[10] A. Balsubramani, S. Dasgupta, and Y. Freund, “The fast con-
vergence of incremental PCA,” in NIPS, 2013.

[11] C.-L. Li, H.-T. Lin, and C.-J. Lu, “Rivalry of two families of al-
gorithms for memory-restricted streaming PCA,” in AISTATS,
2016.

[12] O. Shamir, “A stochastic PCA and SVD algorithm with an ex-
ponential convergence rate,” in ICML, 2015.

[13] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and
A. Scaglione, “Gossip algorithms for distributed signal pro-
cessing,” Proc. IEEE, vol. 98, no. 11, pp. 1847–1864, Nov.
2010.

[14] L. Xiao and S. Boyd, “Fast linear iterations for distributed av-
eraging,” Systems & Control Letters, no. 53, pp. 65–78, Feb
2004.

3528

