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ABSTRACT

Cognitive radio (CR) systems need to detect the presence of a pri-
mary user (PU) signal by continuously sensing the spectrum area of
interest. Radiowave propagation effects like fading and shadowing
often complicate sensing of spectrum holes because the PU signal
can be weak in a particular area. Cooperative spectrum sensing is
seen as a prospective solution to enhance the detection of PU sig-
nals. In this paper we study distributed spectrum sensing, based on
the largest eigenvalue of adaptively estimated correlation matrices
(CMs) of received signals. The PU signal is assumed to be tempo-
rally correlated. In this paper an Combine and Adapt (CTA) least
mean square (LMS) diffusion based mean vector estimation scheme
is proposed. No fusion center (FC) for estimation or detection is
used. We analyse the resulting detection performance and verify the
theoretical findings through simulations.

Index Terms— Cognitive radio, distributed estimation, diffu-
sion LMS, distributed detection, Spectrum Sensing.

1. INTRODUCTION

In cognitive radio (CR) contexts we would like to avoid creating
interference to the PU user and find free spectrum opportunities as
fast as possible. On the other hand the active detection hypothesis
may change during the processing time. Distributed, adaptive net-
work learning methods are able to learn the statistical information
based on observations received by the nodes in the network. These
methods can react to possible changes in the properties of estimated
statistics in real time. Cooperative spectrum sensing is seen as a
prospective solution to address these problems and to enhance the
detection of PU signals [1].

Depending on the signal model assumptions, several type of de-
tectors for spectrum sensing have been proposed in the literature
such as the Matched filter detector [2], the Energy Detector [2], [3],
and the Cyclostationary detector [4]. A second large group of de-
tectors are based on the properties of an estimated signal correla-
tion matrix eigenvalues [5], [6], [7]. The Largest Eigenvalue (LE)
method [5] uses a priori knowledge about the additive noise power
to determine the detection threshold.

Several distributed adaptive estimation and detection schemes
have been studied in the past. Consensus based schemes are anal-
ysed for example in [8], [9], [10], [11]. Least mean square (LMS)
and recursive least squares (RLS) based estimation schemes in [12],
[13], [14], [15]. Optimal, distributed MFD, based on diffusion type
LMS and RLS estimation schemes, were studied in [16], where good
properties of diffusion LMS algorithms where shown. In [17], [18]
and [19] we proposed and analysed diffusion LMS based energy de-
tectors in a CR network.

In this paper we propose and study the performance of LE detec-
tion in a distributed CR network, based on adaptively, distributively
estimated CMs, using the completely distributed CTA type of dif-
fusion LMS strategy (with no central processing unit as a potential
single point of failure). We make the assumption that the CR net-
work does not have prior information about the waveform of the PU
signal and about the channel gains in the secondary nodes except that
the CM of the PU signal is low rank (due to temporal correlation).
In the distributed CR network, every node acts as an independent de-
tector in terms of detection decision making based on the available
CM estimates.

We organize the remainder of the paper as follows. In section II
we specify the system models for the LE detection method and de-
rive an adaptive, distributed CM estimation algorithm based on the
CTA diffusion LMS strategy. In section IV we analyse the perfor-
mance of the proposed distributed CM estimation algorithm (using
a common framework) and the detection performance of the dis-
tributed LE detection method. In section V we present our simu-
lations results.

Notation. In the paper we use the following notations. Bold-
face uppercase and lowercase letters denote matrices and vectors,
respectively. E[·], Cov[·] denote expectation and covariance opera-
tors, respectively. vec[·] and vec−1[·] denote conversion from matrix
to vector and from vector to matrix. (·)T , (·)H and (·)c denote the
vector or matrix transpose, the Hermitian transpose and the complex
conjugate, respectively. ⊗ denotes the Kronecker product.

2. DISTRIBUTED ADAPTIVE LARGEST EIGENVALUE
DETECTION

2.1. Signal model and assumptions

Let theK CR nodes independently sense a communication band of a
PU. Every CR node obtains individually aM ×1 observation vector

yk(n) = [zs(nTs), zs(nTs − δs), . . . , zs(nTs − (M − 1)δs)] ,
(1)

which contain a bunch of samples of the down converted continuous
time signal zs(t), which are collected every Ts seconds with the
sampling period δs < Ts. Thus in general we have the following
signal model under both detection hypotheses

H0 : yk(n) = vk(n),
H1 : yk(n) = αks(n) + vk(n),

(2)

where k = 1, 2, ...,K is the node number, M is the length of ob-
servation vector, and n = 1, 2, ...N is the sample discrete time in-
dex. The primary signal s(n) ∼ CNM (0,Σs), the noise vk(n) and
channel gains αk at node k are assumed to be statistically indepen-
dent. The additive noise vk(n) is assumed to be independently and
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identically distributed (i.i.d) Circularly Symmetric Complex Gaus-
sian noise with zero mean and covariance Σv,k = σ2

v,kIM and un-
correlated in time and space. We assume the noise power is known
a priori and has the same power level over all the nodes in the CR
network.

Each node in the CR network estimates the M ×M CM Rk as

Rk = E
[
yk(n)yk(n)H

]
= Rs,k + Σv,k. (3)

We additionally assume that Rs,k has a low rank (see also [20], [21]),
while Σv,k = σ2

v,kIM . This property can be used for detecting a PU
signal.

Let us define the eigenvalues of the estimate R̂k(n) of CM Rk
in non-increasing order as λ1 ≥ λ2 ≥ · · · ≥ λM . Every node k
detects the presence of a PU signal by independently determining
the LE of the locally available estimate R̂k(n) and by performing
the following detection test

λ1

[
R̂k(n)

] H1

≷
H0

γLE , (4)

using a threshold γLE , which is given by (24).

2.2. Adaptive, Distributed CM estimation and LE detection

CR nodes could cooperate via internal communication links to en-
hance the detection performance (of the PU signal(s)) at every node
k. We assume, that the K nodes in the CR network can rely only
on the subset of global information, that is available to them. The
CR network topology is assumed to be fixed over the sensing time
and strongly connected. We consider a linear, fixed combination of
neighbour estimates and measurements at every node k.

We propose a global (theoretical) model for estimating the CM
in a cooperative manner, where the CR nodes jointly estimate the
network average CM, which is denoted as Ro and in vectorized form
defined as follows

ro =
1

K

K∑
k=1

vec(Rok) =
1

K

K∑
k=1

E
[
vec
[
yk(n)yk(n)H

]]
, (5)

where the M2 × 1 ro is the vectorized form of Ro.
We can vectorize the observation dR,k(n) = vec

[
yk(n)yk(n)H

]
at node k at time instant n and decompose it into the product of a
M2 ×M2 constant (invertible) complex matrix T (whose elements
take the values 0, 1 and ±i, where i denotes the imaginary unit) and
a M2 × 1 real vector dk(n) as dR,k(n) = Tdk(n), to keep the di-
mension of the estimated vector minimal in the adaptive recursions.
We denote the estimate of the real valued E [dk(n)] as p̂k(n) and
propose to relate the estimation of the Rok and Ro in (5) with the
minimization of the following Mean Square Error (MSE) type of
global cost function

po = argmin
p

K∑
k=1

Jk(p) = argmin
p

K∑
k=1

E ‖dk(n)− p‖2, (6)

where M2 × 1 dimensional p ∈ RM . By using standard derivation
steps on (6) we get the optimal solution

po =
1

K

K∑
k=1

E [dk(n)] . (7)

Thus with help of the transformation matrix T, the previously intro-
duced minimization framework can be used to re-define the Rok and
Ro as follows

Ro = vec−1 [Tpo] and Rok = vec−1 [Tpok] . (8)

We need to seek an iterative solution to estimate the pok and po in a
manner, which is adaptive in time and is fully distributed (coopera-
tive).

2.3. Iterative Diffusion solutions

In this paper we skip the derivation details of the CTA type of diffu-
sion LMS mean vector estimation algorithm (provided in [22], fol-
lowing the ideas of [13]). Let Nk denote the neighbourhood group
of node k ∈ K, i.eNk. Let µk be a positive step size of node k. We
introduce theK×K matrix C with non-negative elements satisfying

cl,k = 0 if l /∈ Nk, C1 = 1. (9)

Similarly let the K ×K matrix A satisfy

al,k = 0 if l /∈ Nk, 1TA = 1T . (10)

We summarize the CTA based CM estimation recursions and the de-
tection step in a common form in Algorithm 1. The coefficients cl,k

Algorithm 1 Distributed LMS based CM Estimation and Detection
Start with p̂k(0) = p(0) for every k .
Given non-negative real coefficients al,k, cl,k
for every time instant n ≥ 1 do

for every node k = 1, ...,K do
1. CTA type of CM estimation recursions:
ψ̂k(n) =

∑
l∈Nk

al,kp̂l(n).

p̂k(n+ 1) = ψ̂k(n)

+µk
∑
l∈Nk

cl,k
[
dl(n)− ψ̂k(n)

]
2. LE detection decision:
H0 : λ1

[
vec−1 [Tp̂k(n+ 1)]

]
< γk or

H1 : λ1

[
vec−1 [Tp̂k(n+ 1)]

]
> γk.

(Refer to (24) for selecting the γk).
end for

end for

and al,k define respectively how the neighbouring measurements
dl(n) and estimates p̂l(n) are (unidirectionally) available for the
node k in the CR network. Thus after several iterations the adaptive
estimate R̂k(n) of Ro is available for every node in the CR network,
while the FC is not used. The node k at time instant n can inde-
pendently perform the LE detection based on the available matrix
estimate R̂k(n) = vec−1 [Tp̂k(n)].

As a result the proposed LE detection scheme is able to react to
a possible change in the statistics of observations on line (i.e when
the detection hypothesis changes during the observation time) and
estimates the CMs in a cooperative manner with an averaging effect
over the CR network.

3. PERFORMANCE ANALYSIS

The performance analysis of the proposed algorithm is divided into
three parts: analysis of the moments of the adaptive CM estimates
of recursions in Algorithm 1 in one framework, analysis of the sta-
tistical properties of the adaptive CM estimates and analysis of the
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detection performance of the LE of the adaptive CM estimates. Let
us note that for the theoretical performance analysis of the LE detec-
tor, we need to know the values of the channel gains.

3.1. Moment analysis of adaptive CM estimates

Let us stack the M2 × 1 estimates and observations from all
the nodes k ∈ K into a KM2 × 1 column vector p̂(n)|Hi =

[p̂1(n)|Hi . . . p̂K(n)|Hi]T and d(n)|Hi = [d1(n)|Hi . . . dK(n)|Hi]T
respectively, where i = 1 denotes the case when PU signal is present
and i = 0 the case when PU signal is absent. For the positive step
sizes we define additionalK×K matrix M = diag {µ1, . . . , µK}.
Let ⊗ denote the Kronecker product. The K ×K matrices A1, A2,
C and M are in CR network extended to KM2 × KM2 matri-
ces A1 = AT1 ⊗ IM2 , A2 = AT2 ⊗ IM2 , C = CT ⊗ IM2 and
M = M ⊗ IM2 . Then we can write the CM estimation recursion
in the following general form

p̂(n+1)|Hi = A2

(
I−M

)
A1p̂(n)|Hi+A2MCd(n)|Hi. (11)

For example for CTA algorithm we take A1 = ATdiff ⊗ IM2 , A2 =
IK ⊗ IM2 , C = IK ⊗ IM2 or C = ATdiff ⊗ IM2 .

By denoting the conditional expectation of the observation vec-
tor as E [d(n)|Hi] for i = 0, 1, then based on (11), we have that

E [p̂(n+ 1)|Hi] = A2

(
I−M

)
A1 E [p̂(n)|Hi]

+ A2MCE [d(n)|Hi] , (12)

for i = 0, 1, where the initial value is given as E [p̂(0)|Hi]. It can
be shown that a sufficient condition for the algorithm to be stable is
to select the step size for every k = 1 . . .K as

0 < µk < 2. (13)

Similarly by denoting the conditional covariance of the ob-
servations and estimates under the hypothesis Hi, i = 0, 1 as
Cov [d(n)|Hi] and Cov [p̂(n+ 1)|Hi] we have

Cov [p̂(n+ 1)|Hi] = A2

(
I−M

)
A1 Cov [p̂(n)|Hi]

× AT1
(
I−M

)
AT2

+ A2MC Cov [d(n)|Hi] CTMAT2 . (14)

where initial value is noted by Cov [p̂(0)|Hi], i = 0, 1.
The moments E [d(n)|Hi] and Cov [d(n)|Hi] of the measure-

ments are provided in 3.2.

3.2. Statistical modelling of adaptive CM estimates

Based on 2.1, for the rank one observations dR,k(n) under H1 we
have that

E [dR,k(n)|H1] = vec
[
Rs,k + σ2

vIM
]
. (15)

and the stacked KM2 × 1 vector E [dR(n)|Hi] over k = 1 . . .K
and for i = 0, 1 can be formed based on (15) respectively.

It can be shown, that the k, j ∈ K blocks of the KM2 ×KM2

network-wise covariance matrix Cov [dR(n)|H1] are given as

Cov
[
dR(k,j)(n)|H1

]
=

{[(
Σ̄k

)c ⊗ Σ̄k

]
, k = j

[(Rs,k,j)c ⊗ Rs,k,j ] , k 6= j
(16)

where Σ̄k = E
[
|αk|2

]
Σs + σ2

vIM and where for k 6= j Rs,k,j =

E
[
yk(n)yj(n)H

]
= E

[
αkα

c
j

]
Σs and (.)c denotes a complex con-

jugate. Obviously the Cov [dR(n)|H0] is given as

Cov [dR,k(n)|H0] = σ4
vIM2 . (17)

Thus the E [d(n)|Hi] for (12) and Cov [d(n)|Hi] for (14) can be
given for i = 0, 1 as

E [d(n)|Hi] =
[
T−1 ⊗ IM2

]
E [dR(n)|Hi] , (18)

and

Cov [d(n)|Hi] =
[
T−1 ⊗ IM2

]
× Cov [dR(n)|Hi]

[
(TH)−1 ⊗ IM2

]
. (19)

When the R̂k(n) = vec−1 [Tp̂k(n)] is obtained by using the
exponential type of averaging (as used in LMS type of algorithms),
then it is not Wishart distributed [23, Theorem 3.3.1., 3.5.2.]. We
propose the usage of Total Variance method [24] for approximating
the R̂k(n) by conditional approximative Complex Central (Corre-
lated) Wishart distributions (CC(C)W), for studying the conditional
CDFs of LE of adaptively estimated CMs. Thus we use the approx-
imation

R̂k(n)|Hi ∼ CWM

(
N̄i, Σ̄k,i

)
, (20)

for i = 0, 1 and where ∼ denotes an approximative distribution, N̄i
is the approximating DoF and Σ̄k,i is the approximating population
covariance matrix parameter of the corresponding CC(C)W distribu-
tion. The values for N̄i and Σ̄k,i can be found by matching the mean
and trace of the moments of R̂k(n)|Hi with the corresponding mo-
ments of the devectorized adaptive estimate vec−1 [Tp̂k(n)]. This
gives (see [22] for details), by using the TV method,

Σ̄k,i =
1

N̄i
E
[
R̂k(n)|Hi

]
=

1

N̄i

(
vec−1 [T E [pk(n)|Hi]]

)
.

(21)
and

N̄TV,i =


Tr
[
E
[
R̂k(n)|Hi

]c
⊗ E

[
R̂k(n)|Hi

]]
Tr
[
T Cov [pk(n)|Hi] TH

]
, (22)

where E
[
R̂k(n)|Hi

]
= vec−1 [T E [pk(n)|Hi]].

3.3. Detection Performance Analysis

Let the eigenvalues of Σ̄k,i in (20) be denoted in non-increasing
order as ν1,i ≥ ν2,i ≥ · · · ≥ νM,i.

Based on the [5], [25], the R̂k(n)|H0 (20) is assumed to follow
the CCW distribution and the eigenvalues of Σ̄k,0 are ν1,0 = · · · =
νM,0 = σ2

v/N̄0. The PFA,e, based on the non-asymptotic CDF
model of the R̂k(n)|H0, is given as

FH0,e(x) = | det(Â)|
PFA,e(γLE,e) = 1− FH0,e(γLE,e) (23)

where theM ×M matrix Âi,j =
(
N̄0−j−i−1

i−1

)
γR(N̄0 + i− j, x

ν1,0
),

for i, j = 1, . . . ,M and where γR(k, u) = 1
Γ(k)

∫ u
0
xk−1e−xdx is

the regularized incomplete Gamma function. The detection thresh-
old γLE,e, based on the non-asymptotic model is given as

γLE,e = F−1
H0,e

(1− PFA,e) (24)
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and can be evaluated in terms of a numerical inversion of the exact
CDF formula at a desired PFA,e value.

Since the R̂k(n)|H1 is assumed to be distributed by a CCCW
distribution, the PD based on the non-asymptotic CDF|H1 of the
LE of a CCCW matrix R̂k(n)|H1 is given by [26] as follows

FH1,e(x) = KCC

∣∣∣∣∣
{
νN̄1−M+j
i Γ̄

(
N̄1 −M + j,

x

νi,1

)}
i,j

∣∣∣∣∣,
KCC =

[
M∏
i=1

(N̄1 − i)!
M∏
j=1

(M − i)!

]−1 M∏
k=1

(k − 1)!,

PD,e(γLE,e) = 1− FH1,e(γLE,e). (25)

for i, j = 1, . . . ,M and where Γ̄(k, u) =
∫ u

0
xk−1e−xdx is the

lower incomplete gamma function [27, 8.350].

4. SIMULATION RESULTS

In this section we investigate the probability of detection PD of the
the CTA type of distributed, adaptive LE detection algorithm. The
performance of the algorithm is well illustrated by the PD versus
SNR analysis, where the change in the (network averaged) SNR
is achieved by changing the noise power value σ2

v . The channel
gains are assumed to be constant and are sampled for the CR node
k ∈ K as αk ∼ CN(0, 1). We assume to have one PU signal
s(n) = s(n)1, s(n) ∼ CN(0, 1) and Σs = 11H . Obviously
rank(11H )=1. We select the M = 2, N = 7000, µ = 0.001 and
PFA = 10−2 for all the nodes. The thresholds of the LE detectors
at nodes k ∈ K are found by using (24) with the TV approximation.
Also we select the diffusion topology of the estimates in the CR net-
work, i.e the A matrix, as a combination of the local (A,C = I) and
ring-around (A = ATring,C = I) topologies, similarly as in [19, Eq.
11].

In the following simulations the performance of 4 different net-
work sizes: K = 1, 3, 10, 30 nodes are compared, while the com-
parable results are taken from the last node in the set. The Monte
Carlo estimated PD results (based on the adaptively estimated CMs
and denoted as Ad. Exp. in the figures) are compared with the non-
asymptotic theoretical model (25) (denoted as Theory) and with the
PD results based on approximately equivalent CCW matrices (de-
noted as W. Exp.). These latter matrices are generated based on the
respective moments underH1. The PD versus SNR results are given
in Fig. 1 when TV approximation is used for the CTA algorithm.

It is seen that the non-asymptotic theoretical PD model de-
scribes the detection performance of adaptively estimated CMs well,
also when the noise power is high relative to the PU signal power
(SNR). As the number of nodes in the network increases, the point
where the PD starts to decrease from one, converges to the left by
equalizing and averaging the PD on every CR node.

It can be concluded that the TV approximation for the non-
asymptotic CDF|H1 is usable for studying the performance of the
LE detection of adaptively estimated CMs. When the nodes coop-
erate in estimating the network-wise CM (while nodes are able to
communicate directly only with limited subset of neighbour nodes)
then the resulting LE detection performance is equalized and stabi-
lized over the individual CR nodes.

5. CONCLUSIONS

In this paper a distributed and adaptive, CTA diffusion LMS based
LE detection algorithm was studied, which is applicable in CR net-
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works for detecting the presence of a PU signal. We proposed a gen-
eral framework for analysing the performance of the diffusion LMS
based LE detection scheme and we demonstrated that the theoreti-
cal results are matching with the simulations. It was shown that the
cooperative estimation and detection scheme enhances the detection
performance.
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