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ABSTRACT

User activity detection is a central problem in massive device
communication scenarios in which an access point needs
to detect active devices among large number of potential
devices each transmitting sporadically. By exploiting sparsity
in user activity, the detection problem can be formulated
as a compressed sensing problem, thereby allowing the use
of computationally efficient approximate message passing
(AMP) algorithm for activity detection. This paper proposes
an AMP-based user activity detector that accounts for the
statistics of device geographic locations in a cellular network.
The proposed scheme is based on a minimum mean squared
error (MMSE) denoiser designed for specific wireless channel
fading and path-loss distributions. This paper further provides
an analytic characterization of the false alarm versus missed
detection probabilities using state evolution for AMP. Simu-
lation results show significantly improved detection threshold
for the channel-aware denoiser as compared to standard soft
threshold based AMP.

1. INTRODUCTION

Massive connectivity is a key requirement for future wireless
cellular network in which a large number of devices (e.g.,
sensors) may communicate simultaneously to a central base-
station (BS). A salient feature of these machine type commu-
nications is that the traffic pattern from each of these devices
is typically sporadic, thus at any give time only a small frac-
tion of potentially large number of devices are active. Accu-
rate user activity detection is therefore a central component of
the overall system design for massive connectivity.

This paper considers a pilot-based transmission system
whereas active users synchronously transmit non-orthogonal
signature sequences during a contention phase, and the BS
detects the active users among a large pool of potential
devices based on a linear combination of their signatures.
Due to the sparse nature of the user transmission pattern, user
activity detection can be formulated as a compressed sensing
problem. The goal of this paper is to study the design and
analysis of computationally efficient approximate message
passing (AMP) algorithm for massive device detection.

Specifically, this paper proposes the design of a minimum
mean squared error (MMSE) denoiser for AMP that exploits
the distribution of user locations in a cellular network, as
well as the fading statistics of wireless channels for the active
users. Further, this paper shows that for the activity detection
problem, the tradeoff between the false alarm probability and
the missed detection probability can be analytically charac-
terized via state evolution for AMP. Simulation results show
that as compared to the conventional soft threshold denoiser
based AMP, the proposed MMSE denoiser can significantly
improve the detection threshold.

The user activity detection problem for massive connec-
tivity has been studied in the literature from a compressed
sensing perspective [1–7]. For example, [1] analyzes condi-
tion for reliable detection and [2] studies signature design,
both without considering channel estimation. In [3–7], the
joint user activity detection and channel estimation problem
is studied. Specifically, [3] proposes a greedy algorithm
based on orthogonal matching pursuit. By exploiting the
statistics of channel path-loss, [6] proposes a modified
Bayesian compressed sensing algorithm in a cloud radio-
access network. In the context of cellular networks, [5] adopts
the basis pursuit denoising method, and provides a detection
error bound based on the restricted isometry property. The
performance of such scheme in a practical setting is illus-
trated in [4,5]. In contrast to these previous works, this paper
adopts the computationally more efficient AMP algorithm
for sparse recovery, which is more suitable for large-scale
network with large number of devices. Although the use of
AMP for activity detection has been previously proposed in
[7], this paper makes further progress by exploiting channel
statistics to design an MMSE-denoiser-based AMP that
significantly outperforms conventional compressed sensing
methods. Moreover, this paper provides an analytic detector
performance characterization using state evolution.

2. SYSTEM MODEL AND AMP ALGORITHM

2.1. System Model

Consider a cellular network with one BS and N potential
devices, but in each coherence block only a subset of users
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are active. Let an ∈ {1, 0} indicate whether or not user n
is active. For the purpose of channel probing and user iden-
tification, each user is assigned to a unique pilot sequence
sn = [s1n, s2n, · · · , sLn]T ∈ CL×1, where L is the length of
the pilot sequence. We consider a block fading channel model
where the channel is static in each block. Assuming that the
BS and the users are all equipped with a single antenna each,
the received signal at the BS can be modeled as

y =

N∑
n=1

hnansn + w , Sx + w (1)

where hn ∈ C is the channel coefficient between user n and
the BS, w ∈ CL×1 is the effective complex Gaussian noise
whose variance σ2

w depends on the background noise power
and the transmit power, x , [x1, x2, · · · , xN ]T ∈ CN×1
where xn , hnan, and S , [s1, s2, · · · , sN ] ∈ CL×N .

The objective is to detect the active users, i.e., the non-
zero entries of the vector x based on y. We are interested in
the regime where N is much larger than L, so that the user
pilot sequences cannot be mutually orthogonal; but due to
sporadic traffic, only a small number of devices transmit each
block, resulting in a sparse x. Therefore, the recovering of
x falls into the compressed sensing paradigm. In this paper,
we further assume that all pilot sequences are generated from
i.i.d. complex Gaussian distribution with zero mean and vari-
ance 1

L such that each sequence has unit power.
A key observation of this paper is that the design of

compressed sensing algorithm can be significantly enhanced
by accounting for the knowledge of the statistics of x. Toward
this end, we assume that each user accesses the channel with
probability λ in an i.i.d. fashion, i.e., Pr(an = 1) = λ,∀n,
so that the entries of x follow an i.i.d. mixture distribution:

pX = (1− λ)δ0 + λpH (2)

where δ0 denotes the point mass measure at zero, and pH
denotes the distribution of the channel coefficient hn. Further,
we assume that the users are randomly and uniformly located
in a circular coverage area of radius R around the BS, and the
channel coefficients between the users and the BS follow an
independent distribution that depends on the distance between
the user and the BS. More specifically, pH includes path-loss,
shadowing and Rayleigh fading. The path-loss between each
user and the BS is modeled (in dB) as α+ β log10(d), where
distance d is measured in meter, α is the fading coefficient
at d = 1 and β is the pathloss exponent. The shadowing (in
dB) follows a Gaussian distribution with zero mean and vari-
ance σ2

SF, and the Rayleigh fading component is distributed
as complex Gaussian random variable CN (0, 1).

2.2. AMP Algorithm

This paper adopts an iterative algorithm known as AMP, orig-
inally proposed in [8] and since extended along several direc-
tions [9–11], for detecting the non-zero entries of x. Starting

with x0 = 0 and r0 = y, AMP proceeds at each iteration as

xt+1 = ηt(S
∗rt + xt), (3)

rt+1 = y − Sxt+1 + δ−1rt〈η′t(S∗rt + xt)〉 (4)

where t = 0, 1, · · · is the index of iteration, xt is the estimate
of x at iteration t, rt is the residual, S∗ is the conjugate trans-
pose of S, ηt(·) is a sequence of appropriately designed non-
linear functions known as denoisers, η′t(·) is the first order
derivative of ηt(·), δ , L

N , and 〈·〉 is the averaging operation
over all entries of a vector.

Intuitively, the AMP algorithm performs successive
denoising on the matched filtered output x̃t , S∗rt + xt,
which can be modeled as signal x plus noise, i.e., x̃t = x+vt.
The denoiser is typically designed to minimize MSE at each
iteration. In the compressed sensing literature, the prior
distribution of x is usually assumed to be unknown. In this
case, a minimax framework over the worse case x leads to a
soft thresholding denoiser [8,12]. When the prior distribution
of x is known, the Bayesian framework then can be used to
account for the prior information [13]. In this paper we adopt
the Bayesian approach to design the MMSE denoiser.

The AMP algorithm can be analyzed in the asymptotic
regime where L,N → ∞ with fixed L

N [8]. The state evolu-
tion predicts the per-coordinate performance of the AMP
algorithm at each iteration as follows

τ2t+1 = σ2
w + δ−1E|ηt(X + τtV )−X|2 (5)

where τt is referred to as the state, X and V are random
variables with X following pX and V following the stan-
dard complex Gaussian distribution, and the expectation is
taken over both X and V . The random variables X , V and
X̃t , X+τtV capture the distributions of the entries of x, vt

(up to a factor τt), and x̃t, respectively, with E|ηt(X̃t)−X|2
characterizing the per-coordinate MSE of the estimate of x at
iteration t. State evolution can be applied to a general family
of AMP algorithms for any Lipschitz-continuous ηt(·) [14].

3. AMP BASED USER ACTIVITY DETECTION

3.1. MMSE Denoiser for AMP Algorithm

We now use the Baysian approach to design the denoiser
ηt(·) for the user activity detection problem by minimizing
the MSE. The MMSE denoiser is given by the conditional
expectation E[X|X̃t] at each iteration as function of τt. As
X follows mixture distribution (2), we first characterize the
channel fading component pH accounting for the uniform
distribution of user locations in the cell as well as path-loss,
shadowing, and Rayleigh fading

pH(h) = a

∫ ∞
0

z−γ−2Q(b ln z + c) exp

(
−|h|2

z2

)
dz (6)
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where Q(z) , 2√
π

∫∞
z

exp(−s2)ds, γ , 40
β + 1, and a, b,

and c are constants as shown below

a =
20

πR2β
exp

(
2(ln 10)2σ2

SF

β2
− 2(ln 10)α

β

)
,

b =
−10
√

2

(ln 10)σSF
, c = −α+ β log10R√

2σSF
− 20

βb
.

where α, β, σSF, R are defined in system model. To simplify
(6), we choose to ignore shadowing and approximate (6) as

pH(h) ≈ a′
∫ ∞
ε

z−(γ+2) exp

(
−|h|

2

z2

)
dz (7)

where a′ , 40
πR2β 10−2α/β and ε , 10−(α+β log10 R)/20 are

constants. Based on (7), the MMSE estimator is derived as

E[X|X̃t] =

∫
xpX|X̃t(x|x̃t)dx

=
x̃t

ξ(x̃t)

∫ ∞
ε

z2−γ

(z2 + τ2t )2
exp

(
−|x̃t|2

z2 + τ2t

)
dz (8)

where

ξ(x̃t) =
1− λ
λa′πτ2t

exp

(
−|x̃t|2

τ2t

)
+

∫ ∞
ε

z−γ exp
(
−|x̃t|2
z2+τ2

t

)
z2 + τ2t

dz.

(9)

Note that ηmmse
t (x̃t) depends on τt. In practice, an empir-

ical estimate τ̂t = 1√
L
‖rt‖2 can be used [15]. Although

ηmmse
t (x̃t) is in a complicated form, it can be pre-computed,

so it does not add to run-time complexity. To gain some intu-
ition, we illustrate the shape of ηmmse

t (x̃t) as well as the soft
thresholding in Fig. 1. Observe that the MMSE denoiser plays
a role similar to the soft thresholding denoiser, shrinking the
input towards the origin, especially when the input is small,
thereby promoting sparsity.

3.2. Likelihood Ratio Test for Activity Detection

After recovering an estimate of x via the AMP, we employ the
likelihood ratio test to perform user activity detection. For the
hypothesis test problem{

H0 : X = 0, inactive user,

H1 : X 6= 0, active user;
(10)

the optimal decision rule is given by

LLR = log

(
pX̃t|X(x̃t|x 6= 0)

pX̃t|X(x̃t|x = 0)

)
H0

≶
H1

lth (11)

where LLR denotes the log-likelihood ratio, and lth denotes
the decision threshold typically determined by a cost function.
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Fig. 1. MMSE vs. soft thresholding denoiser [10] ηsoftt (x̃t) ,
(x̃t − θx̃t

|x̃t| )I(|x̃
t| > θ), where I(·) is the indicator function.

Since X̃t , X+τtV in AMP, where V follows a complex
Gaussian distribution asymptotically, we can write down the
likelihood of X̃t given X = 0 or X 6= 0 in the asymp-
totic regime, while accounting for path-loss, shadowing, and
fading components, as

pX̃t|X(x̃t|x = 0) =
1

πτ2t
exp

(
−|x̃

t|2

τ2t

)
(12)

pX̃t|X(x̃t|x 6= 0) = a

∫ ∞
0

Q(b ln z + c)

zγ(z2 + τ2t )
exp

(
−|x̃t|2

z2 + τ2t

)
dz

(13)

The log-likelihood ratio is then given as

LLR = log

∫ ∞
0

aπτ2t z
−γ

z2 + τ2t
Q(b ln z + c) exp(|x̃t|2∆)dz

(14)

where ∆ , 1
τ2
t
− 1
z2+τ2

t
. By observing thatLLR is monotonic

in |x̃t|, we can simplify the decision rule in (11) as |x̃t|
H0

≶
H1

l′th,

i.e., user activity detection can be performed based on the
magnitude of x̃t only.

3.3. Performance Analysis

The fact that the estimation error in AMP can be asymptot-
ically modeled as Gaussian allows analytic characterization
of false alarm and the missed detection probabilities for user
activity detection as follows:

PF =

∫
|x̃t|>l′th

pX̃t|X(x̃t|x = 0)dx̃t (15)

PM =

∫
|x̃t|<l′th

pX̃t|X(x̃t|x 6= 0)dx̃t (16)
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Fig. 2. Performance of AMP algorithm with MMSE denoiser

Algorithm 1 AMP Based User Activity Detection

Input and initialization: y, S, l′th, x0 = 0, and r0 = y.
Repeat
1) Update the estimate of x as in (3) with ηmmse

t (·).
2) Update the residual as in (4) with ηmmse

t (·).
Until convergence
3) Compute x̃t = S∗rt + xt.
4) For each entry of x̃t, perform LLR test based on l′th.

where parameter τt converges to τ∞ as the algorithm converges.
To compute τ∞, we use the state evolution (5), where
E|ηt(X + τtV ) − X|2 in (5) can be interpreted as the MSE
of the denoiser, given as

MSEmmse(τt) =

∫
var(X|X̃t)pX̃t(x̃

t)dx̃t (17)

where

var(X|X̃t) =E[|X − E[X|X̃t]|2 | X̃t]

=
|x̃t|2µ(x̃t) + τ2t ν(x̃t)

ξ(x̃t)
− |x̃

t|2ν2(x̃t)

ξ2(x̃t)
(18)

and

µ(x̃t) =

∫ ∞
ε

z4−γ

(z2 + τ2t )3
exp

(
− |x̃t|2

z2 + τ2t

)
(19)

ν(x̃t) =

∫ ∞
ε

z2−γ

(z2 + τ2t )2
exp

(
− |x̃t|2

z2 + τ2t

)
(20)

Then, based on (5), we have τ2∞ = σ2
w + 1

δMSEmmse(τ∞).

4. SIMULATION RESULTS

We evaluate the performance of the proposed user activity
detection method in a cell of radius R = 1000m with poten-
tial N = 4000 users among which 200 are active, i.e., λ =

5 10 15 20 25 30 35 40 45

Tx power (dBm)

10-4

10-3

10-2

10-1

100

P
M

 =
 P

F

MMSE denoiser, L = 300
MMSE denoiser, L = 400
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Fig. 3. Impact of transmit power and pilot length

0.05. The channel fading parameters are α = 15.3, β = 37.5
and σSF = 8, and the background noise is−169dBm/Hz over
10MHz. Fig. 2 shows the tradeoff between the missed detec-
tion and the false alarm probabilities of AMP with MMSE
denoiser with pilot sequence length L = 800. We see that
the predicted PM and PF match the analysis very well, vali-
dating the approximation in (7) for ignoring shadowing. We
also plot a lower bound using τ∞ = σw. The lower bounds
are very close to the actual performance, indicating that after
convergence AMP is able to almost completely eliminate
multiuser interference; the remaining error is dominated by
the background noise. For comparison, we also plot the
performance of the widely used CoSaMP algorithm [16]. We
observe that AMP outperforms CoSaMP due partly to the fact
that CoSaMP does not exploit channel distribution informa-
tion. Note that performing user activity detection by solving
the LASSO problem via direct convex optimization would
have been too computationally complex.

Fig. 3 compares AMP with MMSE denoiser with soft
thresholding denoiser as function of transmit power and pilot
length. For convenience, we set PF = PM by properly
choosing l′th. Observe first that the MMSE denoiser outper-
forms soft thresholding significantly, but more importantly,
the phase transition (i.e., the minimum L needed to drive PF
and PM to zero as transmit power increases) is about 300
for the MMSE denoiser and 600 for the soft threshloding
denoiser, indicating the clear advantage of accounting for
channel statistics in user activity detector design.

5. CONCLUSIONS

This paper proposes to use the AMP algorithm with MMSE
denoiser for user activity detection for massive connectivity.
We provide a performance analysis of the false alarm and the
missed detection probabilities and illustrate the advantage of
exploiting the statistics of wireless channel in detector design.
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