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ABSTRACT

This paper focuses on an average robust transmit beamforming op-
timization problem for the multiuser multiple-input-single-output
(MISO) downlink scenario. In this problem, the channels are
modeled as Gaussian variables with mean zero and with known
covariance at the transmitter. The design criterion is to maximize
the sum of the users’ average rates with respect to the channels,
subject to the total transmission power constraint. The challenge
of this problem is that the average rate function generally admits
a complex expression. Such an issue can be tackled by stochastic
approximation (SA) approaches, but SA may require a large number
of samples, or iterations, to provide reasonable performance. In this
work, a simple deterministic approximation scheme is proposed.
First, we propose a closed-form surrogate of the per-user average
rate function. The proposed surrogate function is shown to have an
approximation accuracy within 0.8314 bits from the true average
rate. Then, we utilize the proposed surrogate function to establish
an algebraically simple alternating optimization algorithm for the
beamforming problem. Simulation results show that the proposed
algorithm is computationally much more efficient than an SA-based
state-of-the-art algorithm when they are compared under similar
sum rate performance levels.

Index Terms— robust transmit beamforming, multiuser MIMO

1. INTRODUCTION

It has been known for more than a decade that multiuser multi-input
multi-output (MIMO) transceiver techniques such as transmit beam-
forming can lead to tremendous improvement of the spectral effi-
ciency of a wireless network [1]. In recent frontier developments
such as massive MIMO and full-duplex MIMO, transmit beamform-
ing and related concepts are still seen to play an eminent role. When
one performs transmit beamforming design, it is common to assume
that channel state information at the transmitter (CSIT) is available
in a perfect and instantaneous manner. However, practical systems
rarely satisfy such an assumption because of issues such as inaccu-
rate channel estimation, limited channel feedback, outdated CSIT ef-
fects, to name a few [2,3]. Thus, a classic and fundamentally impor-
tant problem is to study how we can robustify the beamforming de-
signs when only imperfect or partially-informed CSIT is available—
that is, robust transmit beamforming.

The robust beamforming topic has drawn much attention in the
community, and we have seen a plethora of designs based on vari-
ous robust quality-of-service (QoS) performance metrics and various
imperfect CSIT settings; see the literature [4–10] and the references
therein for details. In this paper our focus is on an average robust
design for the multiuser multiple-input single-output (MISO) down-
link scenario. We adopt a statistical CSIT model where the channels

are modeled as zero-mean Gaussian random variables, and the base
station (BS) knows only the covariances of the channels. This model
may be used in situations where the BS is unable to acquire CSIT
in an instantaneous sense, but can estimate the second-order statis-
tics of the channels (e.g., via uplink signal measurements) [11–13].
Then, we choose the per-user average rate with respect to the chan-
nel as the robust QoS performance metric, and seek to maximize the
sum of the per-user average rates subject to the total transmission
power constraint. This average robust sum-rate maximization prob-
lem is difficult to deal with because the per-user average rate func-
tion generally does not exhibit a desirable structure for us to perform
optimization. The average robust problem was tackled in [8] via
a stochastic successive upper bound approximation (SSUM) frame-
work; we should also mention the stochastic parallel decomposition
framework [14] which was used to deal with a very similar average
robust problem. These two frameworks were essentially developed
for a wider class of problems, namely, stochastic optimization, and
they are theoretically sound in the sense that they guarantee conver-
gence to a stationary point under some mild assumptions. The draw-
back of these frameworks is that they rely on stochastic approxima-
tion, which uses randomly generated samples to handle the average
rate function and may require a large amount of samples to perform
well.

The contribution of this work lies in exploiting the underlying
problem structures to establish a simple and deterministic scheme for
approximating the average robust sum-rate maximization problem.
We will first propose a simple surrogate function for the per-user
average rate function. The approximation accuracy of the proposed
surrogate function will be analyzed. Then, we will use our surro-
gate function to establish an alternating optimization algorithm that
shows a similar flavor, and also efficiency, as a well-known beam-
forming design algorithm in the perfect CSIT case [15]. Simulation
results will show that our approach outperforms the SSUM approach
in terms of the number of iterations required to achieve good per-
formance. We should highlight that our development also leads to
an interesting connection between the so-called estimated signal-to-
interference-and-noise ratio (SINR) performance metric [11] and the
average robust design, which was not reported in previous work.

2. PROBLEM FORMULATION AND BACKGROUND

Consider a single-cell multiuser MISO downlink scenario where
a base station (BS) employs linear beamforming to transmit data
streams to users, with one stream per user, in a simultaneous fash-
ion and over the same frequency band. We follow the standard
signal model in this context, and readers are referred to the lit-
erature [11, 16, 17] for a complete exposition of the model. Let
hi ∈ CN and wi ∈ CN denote the channel from the BS to user i
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and the beamformer for user i, respectively, where N is the number
of transmit antennas at the BS. Also, let K be the number of users.
Given information of the channels hi’s at the BS, i.e., perfect CSIT,
the achievable rate of user i can be characterized as

Ri(W ,hi) = log(1 + SINRi(W ,hi)),

whereW = [w1, . . . ,wK ],

SINRi(W ,hi) =
|hHi wi|2∑

j 6=i |hHi wj |2 + σ2
i

is the SINR of user i, and σ2
i > 0 is the noise power corresponding

to user i.
We are interested in an imperfect CSIT setting where every chan-

nel hi is modeled as a random variable, and the BS has information
of the channel distributions only. The problem is to design the beam-
formers under channel distribution information. Particularly, the fol-
lowing average robust sum-rate maximization (SRM) problem will
be our focus:

max
W

∑K
i=1 Ehi∼Di [Ri(W ,hi)]

s.t.
∑K
i=1 ‖wi‖

2
2 ≤ P,

(1)

whereDi denotes the distribution of hi, and P is the maximum total
transmission power of the BS (note thatW ∈ CN×K , and we make
it implicit in problem (1) for brevity). It should be mentioned that
problem (1) uses the average rate function Ehi∼Di [Ri(W ,hi)] as
the robust QoS performance metric, and thus it is an average robust
design.

Problem (1) is an instance of the stochastic optimization prob-
lem class, which is known to be challenging to solve in general. For
the case of problem (1), the challenge lies in the fact that the average
rate function Ehi∼Di [Ri(W ,hi)] does not admit an explicit expres-
sion in general. To tackle the aforementioned challenge, one direc-
tion is to apply a stochastic approximation (SA) approach [8, 14].
Roughly speaking, an SA algorithm works in the following way:
randomly generate samples from the channel distributions Di’s, use
those samples to perform some kind of incremental update on W ,
and repeat such an update until a stopping rule is satisfied. As dis-
cussed in the Introduction, some sophisticated SA algorithms such
as [8,14] can guarantee convergence to a stationary point under fairly
mild assumptions on the channel distributions Di’s. However, by
the sample approximation nature of SA, one would expect that an
SA algorithm would require many samples, or iterations, to provide
reasonable performance; this will be shown to be true by simulation
results in Section 5.

3. A SIMPLE APPROXIMATION OF THE AVERAGE
RATES

Our approach for tackling the average robust SRM problem in (1) is
to develop a simple approximation, or surrogate, of the average rate
function Ehi∼Di [Ri(W ,hi)]. Let us assume the following channel
distribution model:

Di = CN (0,Ri), i = 1, . . . ,K, (2)

where every covariance Ri � 0 is known to the BS (the notation
CN (µ,C) stands for a circular complex Gaussian distribution with
mean µ and covariance C, and X � 0 means that X is positive

semidefinite (PSD)). The above model is commonly used in situ-
ations where the BS is unable to acquire the channels hi’s in an
instantaneous sense, but can estimate the second-order statistics of
the channels, e.g., by uplink signal measurement [11–13]. In the
above model, an explicit expression of the average rate function can
actually be derived [18, Theorem 1]. However, the expression is
too complex and may not be easy to handle from an optimization
viewpoint. Our proposed surrogate of the average rate function is as
follows:

R̄i(W ) = log

(
1 +

wH
i Riwi∑

j 6=iw
H
j Riwj + σ2

i

)
. (3)

As can be seen, Eq. (3) admits a simple expression. In the next sec-
tion, we will leverage on the simplicity of (3) to establish an efficient
algorithm for problem (1). For now, let us consider this question:
does (3) have any guarantee in approximation accuracy? We answer
this question in the following proposition:

Proposition 1 Consider the average rate surrogate function in (3)
under the statistical CSIT model in (2). It holds true that∣∣Ehi∼Di [Ri(W ,hi)]− R̄i(W )

∣∣ ≤ γ, for anyW ,

where γ ' 0.5772 is the Euler constant.

Proposition 1 reveals that the surrogate function (3) is non-
heuristic in the sense that its rate approximation error is no worse
than γ/ log(2) = 0.8314 bits.

Proof of Proposition 1: First, note that Ri(W ,hi) can be de-
composed as

Ri(W ,hi) = log

(
1 +

∑
j |h

H
i wj |2

σ2
i

)
−log

(
1 +

∑
j 6=i |h

H
i wj |2

σ2
i

)
.

(4)
Likewise, we can write

R̄i(W ) = log

(
1 +

∑
j w

H
j Riwj

σ2
i

)
−log

(
1 +

∑
j 6=iw

H
j Riwj

σ2
i

)
.

(5)
Second, we prove a lower bound on Ehi∼Di [Ri(W ,hi)] by con-
sidering the two terms on the right-hand side of (4). By Jensen’s
inequality, we have

Ehi∼Di

[
log

(
1 +

∑
j 6=i |h

H
i wj |2

σ2
i

)]

≤ log

1 +
Ehi∼Di

[∑
j 6=i |h

H
i wj |2

]
σ2
i


= log

(
1 +

∑
j 6=iw

H
j Riwj

σ2
i

)
(6)

Also, consider the following lemma:

Lemma 1 Let Φ ∈ Cn×n be any Hermitian PSD matrix. We have

Eξ∼CN (0,I)[log(1 + ξHΦξ)] ≥ log(1 + Tr(Φ))− γ,

where γ is again the Euler constant.
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Lemma 1 is a consequence of stochastic majorization [19] and cer-
tain integral results [20]; the proof is omitted here owing to the limit
of space. Using Lemma 1, we have

Ehi∼Di

[
log

(
1 +

∑
j |h

H
i wj |2

σ2
i

)]

=Eξi∼CN (0,I)

log

1 +
ξHR

1/2
i

(∑
j wjw

H
j

)
R

1/2
i ξ

σ2
i


≥ log

1 +
Tr
(
R

1/2
i

(∑
j wjw

H
j

)
R

1/2
i

)
σ2
i

− γ
= log

(
1 +

∑
j w

H
j Riwj

σ2
i

)
− γ, (7)

where R1/2
i denotes the PSD square root of Ri. By taking expec-

tation on (4) with respect to hi, and applying (6)–(7) and (5), we
obtain a lower bound

Ehi∼Di [Ri(W ,hi)] ≥ R̄i(W )− γ.

Moreover, by following the same proof as above, one can also show
that

Ehi∼Di [Ri(W ,hi)] ≤ R̄i(W ) + γ.

The two above bounds complete the proof. �

A remark is as follows.

Remark 1 In the transmit beamforming context, there is a widely-
used QoS performance metric called the estimated SINR [11]. The
estimated SINR is defined as

SINRi(W ) =
Ehi∼Di [|h

H
i wi|2]

Ehi∼Di [
∑
j 6=i |hHi wj |2] + σ2

i

=
wH
i Riwi∑

j 6=iw
H
j Riwj + σ2

i

,

which is the ratio of the average signal power to the average
interference-plus-noise power. It was introduced as a way to eval-
uate the (instantaneous) SINR approximately when perfect CSIT is
unavailable. The use of the estimated SINR is particularly common
when one considers the SINR-constrained formulation, that is,

min
W

∑K
i=1 ‖wi‖

2
2

s.t. SINRi(W ) ≥ βi, i = 1, . . . ,K,
(8)

where βi’s are the minimum QoS requirements; see [11, 16, 21] and
many subsequent works that follow the above references. While the
estimated SINR is a reasonable QoS measure intuitively, it is unclear
in the existing literature how and in what way the estimated SINR is
linked with achievable rates. Interestingly, our result provides such
a connection: One can see that our rate surrogate in (3) is simply

R̄i(W ) = log(1 + SINRi(W )).

Thus, under the statistical CSIT model in (2), the estimated SINR
leads to a non-heuristic approximation of the average rate function
Ehi∼Di [Ri(W ,hi)] — an interpretation not seen in the literature.
Also, for the SINR-constrained design in (8), we have the following
implication by Proposition 1:

SINRi(W ) ≥ βi =⇒ Ehi∼Di [Ri(W ,hi)] ≥ log(1+βi)−γ.

4. THE PROPOSED OPTIMIZATION ALGORITHM

Having proposed a simple average rate approximation in the last sec-
tion, we are now ready to establish a new algorithm for the average
robust SRM problem in (1). Specifically, we apply the approxima-
tion in (3) and consider the following approximate version of prob-
lem (1):

max
W

∑K
i=1 R̄i(W )

s.t.
∑K
i=1 ‖wi‖

2
2 ≤ P.

(9)

We tackle problem (9) via the alternating optimization approach
in [15], which was previously proposed for the perfect-CSIT SRM
problem and is commonly known as the weighted minimum-mean-
square-error (WMMSE) approach. Our development is as follows.
Let

gi(W ,ui) =
(∑

j w
H
j Riwj + σ2

i

)
‖ui‖22−2Re[uHi R

1/2
i wi]+1.

It can be easily verified that

min
ui∈CN

gi(W ,ui) =
1

1 +
wHi Riwi∑

j 6=iw
H
j Riwj+σ

2
i

, (10)

and the minimum is attained when

ui =
1∑

j w
H
j Riwj + σ2

i

R
1/2
i wi. (11)

Also, consider the following standard result: For any x > 0, we have

log(x) = min
θ≥0

xθ − log(θ)− 1, (12)

and the minimum is attained when θ = 1/x. Using (10) and (12),
one can show that problem (9) is equivalent to

min
W ,U,θ

∑K
i=1 θigi(W ,ui)− log(θi)

s.t. θ ≥ 0,
∑K
i=1 ‖wi‖

2
2 ≤ P,

(13)

where U = [ u1, . . . ,uK ] ∈ CN×K . The equivalent formulation
in (13) allows us to handle the problem conveniently via alternating
optimization. Specifically, we optimize W , U and θ in an alter-
nating or cyclic fashion. The optimization of U given W ,θ has a
closed form and is given in (11). The optimization of θ givenW ,U
also has a closed form and is given by θi = 1/gi(W ,ui) for all i.
The optimization of W given U ,θ is a quadratic program subject
to one quadratic constraint, and it can be efficiently solved using a
water-filling algorithm [15]. The pseudo-code of the resulting algo-
rithm is shown in Algorithm 1.

Algorithm 1 : Alternating Optimization Algorithm for Problem (9)
1: given a feasibleW
2: repeat
3: ui ← 1∑

j w
H
j Riwj+σ

2
i
R

1/2
i wi, i = 1, . . . ,K;

4: θi ←
(

1− uHi R
1/2
i wi

)−1

, i = 1, . . . ,K;

5: wi←

(
K∑
j=1

θju
H
j ujRj + λI

)−1

R
1/2
i uiθi, i = 1, . . . ,K,

where λ is chosen such that the above wi’s satisfy∑K
i=1 ‖wi‖

2
2 = P ; see [15] for an algorithm of doing so.

6: until a stopping rule is satisfied.
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Before we finish, we should give a few remarks. First, and as a
rather subtle point, our algorithm is a minimum mean square error
(MMSE)-free version of the original WMMSE approach [15]. The
original WMMSE approach relies on a notion that utilizes an equiva-
lent relationship between MMSE and SINR. Such an MMSE notion
is specifically for the perfect CSIT case, and it does not apply to
our problem due to the inherent problem structures in (9) (specif-
ically, the estimated SINR structures). However, we are able to
derive a replacement of the MMSE notion, which is (10) and uses
simple algebraic concepts. Thus, our algorithm has nothing to do
with MMSE and only adopts the insight of alternating optimization
in the WMMSE approach. Second, the technique shown above can
be easily extended to other formulations such as the multicell sce-
nario, proportionally fair utility maximization [15] and user group-
ing [22]; such extensions are easy and straightforward, and the de-
tails are omitted here in view of space limitation.

5. NUMERICAL RESULTS

In this section, simulations are used to show the performance of
the proposed algorithm in Algorithm 1. We also benchmark our
algorithm against an existing SA-based algorithm, specifically, the
stochastic WMMSE algorithm which is the application of the SSUM
framework [8].

The simulation settings are as follows. The number of transmit
antennas is N = 8, the number of users is K = 4, and equal noise
power σ2

1 = . . . = σ2
K = σ2 is assumed. We model the channel

covariances by a similar way as the specular model in [23]. Specifi-
cally, we have

Ri =

L∑
j=1

αi,ja(ϕi,j)a(ϕi,j)
H ,

for some L, {ϕi,j}, {αi,j}, where αij > 0;

a(ϕ) =

[
1, e−j2π

d cos(ϕ)
λ , . . . , e−j2π

(N−1)d cos(ϕ)
λ

]T
is a steering vector with angle ϕ, wavelength λ and antenna spacing
d. We set d = 0.5λ, L = 3, αi,j = 1/L for all i, j. In each simula-
tion trial, we first randomly generate a set of mean angles ϕ̄i’s via a
uniform distribution on [0, 2π]. Then, the angles ϕi,j are randomly
generated following a uniform distribution on

[
ϕ̄i − π

3
, ϕ̄i + π

3

]
.

Fig. 1 compares the convergence rates of the proposed algo-
rithm and the stochastic WMMSE algorithm. It is a one-trial re-
sult, and we set P/σ2 = 20 dB. Note that the average sum rate∑
i Ehi∼Di [Ri(W ,hi)] in the figure are obtained by Monte-Carlo

averaging over 1,000 independent channel realizations. Also, “Sur-
rogate” refers to the approximate average sum rate value

∑
i R̄i(W )

of our algorithm. We see that the convergence speed of our algo-
rithm is much faster than that of stochastic WMMSE. Furthermore,
the worst-case gap between the approximate and true average sum
rates of our algorithm is about 1.87 bits in this example, which is
smaller than 4 × γ ≈ 3.3256 bits and agrees with our analysis in
Proposition 1.

Fig. 2 shows the average sum rate performance of the two algo-
rithms over 500 simulation trials. We terminate the algorithm when
its number of iterations exceeds a certain value, shown as “iter” in
the legend. We observe from Fig. 2 that the stochastic WMMSE
algorithm requires 2, 000 iterations to approach the performance of
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our algorithm with 20 iterations. Also, notice that further increas-
ing the iteration number does not lead to significant performance
improvement for stochastic WMMSE by our empirical experience.
This suggests that the proposed algorithm is much more efficient
than the stochastic WMMSE algorithm.

6. CONCLUSION AND DISCUSSION

In this paper, we have proposed a simple low-complexity approxi-
mation scheme for the average robust sum-rate maximization prob-
lem for multiuser MISO downlink and under a statistical covariance-
based CSIT model. As a future direction, it would be interesting to
extend this work to the MIMO case and to the nonzero channel mean
case.

3507



7. REFERENCES

[1] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, “Ca-
pacity limits of MIMO channels,” IEEE J. Sel. Areas Commun.,
vol. 21, no. 5, pp. 684–702, 2003.

[2] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Mul-
tiuser MIMO achievable rates with downlink training and chan-
nel state feedback,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp.
2845–2866, Jun. 2010.

[3] N. Jindal, “MIMO broadcast channels with finite-rate feed-
back,” IEEE Trans. Inf. Theory, vol. 52, no. 11, pp. 5045–5060,
2006.

[4] M. B. Shenouda and T. N. Davidson, “Convex conic formu-
lations of robust downlink precoder designs with quality of
service constraints,” IEEE J. Sel. Top. Signal Process., vol. 1,
no. 4, pp. 714–724, 2007.

[5] G. Zheng, K.-K. Wong, and B. Ottersten, “Robust cogni-
tive beamforming with bounded channel uncertainties,” IEEE
Trans. Signal Process., vol. 57, no. 12, pp. 4871–4881, 2009.

[6] N. Vucic and H. Boche, “Robust QoS-constrained optimiza-
tion of downlink multiuser MISO systems,” IEEE Trans. Sig-
nal Process., vol. 57, no. 2, pp. 714–725, 2009.

[7] M. B. Shenouda, T. N. Davidson, and L. Lampe, “Outage-
based design of robust Tomlinson–Harashima transceivers for
the MISO downlink with QoS requirements,” Signal Process.,
vol. 93, no. 12, pp. 3341–3352, 2013.

[8] M. Razaviyayn, M. Sanjabi, and Z.-Q. Luo, “A stochastic suc-
cessive minimization method for nonsmooth nonconvex op-
timization with applications to transceiver design in wireless
communication networks,” Mathematical Programming, vol.
157, no. 2, pp. 515–545, 2016.

[9] K.-Y. Wang, A. M.-C. So, T.-H. Chang, W.-K. Ma, and C.-Y.
Chi, “Outage constrained robust transmit optimization for mul-
tiuser MISO downlinks: Tractable approximations by conic
optimization,” IEEE Trans. Signal Process., vol. 62, no. 21,
pp. 5690–5705, 2014.

[10] W.-K. Ma, J. Pan, A. M.-C. So, and T.-H. Chang, “Unrav-
eling the rank-one solution mystery of robust miso downlink
transmit optimization: A verifiable sufficient condition via a
new duality result,” to apprear in IEEE Trans. Signal Process.,
2017, available online at https://arxiv.org/abs/1602.01569.

[11] M. Bengtsson and B. Ottersten, “Optimal and suboptimal trans-
mit beamforming,” Chapter 18 in Handbook of Antennas in
Wireless Communications, L. C. Godara, Ed., CRC Press, Aug.
2001.

[12] M. Vu and A. Paulraj, “A robust transmit CSI framework with
applications in MIMO wireless precoding,” in Conf. Record
39th Asilomar Conf. Signals, Systems, Computers, 2005, pp.
623–627.

[13] A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time
Wireless Communications. Cambridge University Press, 2003.

[14] Y. Yang, G. Scutari, D. P. Palomar, and M. Pesavento, “A par-
allel decomposition method for nonconvex stochastic multi-
agent optimization problems,” IEEE Trans. Signal Process.,
vol. 64, no. 11, pp. 2949–2964, 2015.

[15] Q. Shi, M. Razaviyayn, Z. Q. Luo, and C. He, “An iteratively
weighted MMSE approach to distributed sum-utility maxi-
mization for a MIMO interfering broadcast channel,” IEEE
Trans. Signal Process., vol. 59, no. 9, pp. 4331–4340, Sep.
2011.

[16] A. B. Gershman, N. D. Sidiropoulos, S. Shahbazpanahi,
M. Bengtsson, and B. Ottersten, “Convex optimization-based
beamforming: From receive to transmit and network designs,”
IEEE Signal Process. Mag, vol. 27, no. 3, pp. 62–75, 2010.

[17] E. Björnson, M. Bengtsson, and B. Ottersten, “Optimal mul-
tiuser transmit beamforming: A difficult problem with a simple
solution structure,” IEEE Signal. Proc. Mag., vol. 31, no. 4, pp.
142–148, 2014.

[18] E. Bjornson, R. Zakhour, D. Gesbert, and B. Ottersten, “Coop-
erative multicell precoding: Rate region characterization and
distributed strategies with instantaneous and statistical CSI,”
IEEE Trans. Signal Process., vol. 58, no. 8, pp. 4298–4310,
2010.

[19] E. Jorswieck and H. Boche, Majorization and Matrix-
Monotone Functions in Wireless Communications. Hanover,
MA, USA: Now Publishers Inc., 2007.

[20] S. X. Wu, W.-K. Ma, and A. M.-C. So, “Physical-layer mul-
ticasting by stochastic transmit beamforming and Alamouti
space-time coding,” IEEE Trans. Signal Process., vol. 61,
no. 17, pp. 4230–4245, Sep. 2013, also the companion tech-
nical report at https://arxiv.org/pdf/1305.1427.pdf.

[21] M. Schubert and H. Boche, “Solution of the multiuser down-
link beamforming problem with individual SINR constraints,”
IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 18–28, 2004.

[22] M. Razaviyayn, M. Baligh, A. Callard, and Z.-Q. Luo, “Joint
user grouping and transceiver design in a MIMO interfering
broadcast channel,” IEEE Trans. Signal Process., vol. 62, no. 1,
pp. 85–94, 2014.

[23] D. Gesbert, L. Pittman, and M. Kountouris, “Transmit
correlation-aided scheduling in multiuser MIMO networks,” in
Proc. Int. Conf. Acous., Speech, Signal Process., vol. 4. IEEE,
2006, pp. 249–252.

3508


