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ABSTRACT

Consider the uplink transmission of a single-cell multi-
user multiple-input multiple-output (MIMO) system with
K single-antenna users and a base station (BS) equipped with
a very large number of antennas denoted byM . Consider a
jamming device withN > M distributed antennas attempt-
ing to deteriorate the communication between the users and
the BS. We propose an asymptotic condition on the jamming
power under which the jamming-plus-noise subspace over-
laps with the signal subspace. Under this condition, existing
blind jamming rejection methods, such as the one in [1], fail.
The proposed results are based on the application of results
from large-dimensional random matrix theory.

Index Terms— Massive MIMO, jamming attacks, ran-
dom matrix theory, eigenvalue spectrum

1. INTRODUCTION

Reciprocity-based Massive (MaMIMO), operating in TDD
[2], is currently the most compelling 5G wireless access tech-
nology. A sequence of papers [3, 4, 5, 6] have highlighted the
susceptibility of MaMIMO to jamming attacks that specif-
ically target the uplink training phase, effectively creating
artificial pilot contamination which destroys the channel
estimates and thereby, potentially, severely degrades perfor-
mance in closed-loop operation. (The “reverse” problem, of
using MaMIMO technology to jam a conventional wireless
link, was studied in [7].) This matter is important, in the light
of the foreseen widespread adoption of MaMIMO technology
in standards, and amid increasing concerns that intentional
jamming represents an increasing threat to wireless infras-
tructure [8].

In the recent previous work [1], we considered the sce-
nario of MaMIMO with a distributed jammer, potentially con-
sisting of transmitters that create users’-like signals. From a
practical perspective, this is a threatening setup as the local-
ization and disarming of such jammers could be very diffi-
cult when they smartly adjust their transmission powers. In
[1], we proposed a subspace-based algorithm for blind de-
tection and mitigation of such distributed jamming attacks
in MaMIMO. This algorithm works particularly well when

the signal subspace is separable from the jamming/noise sub-
spaces.

In this paper, we use random matrix theory to establish a
fundamental asymptotic condition on the jamming power to
prevent the use of blind subspace-based methods for jamming
rejection such as the one in [1], which the BS would apply if it
knows that jamming exists. This analysis is complementary to
our results in [9], derived for a different but related problem.
The specific signal model of concern is given in Section 2,
and the main result of the paper is Theorem 1. Conclusions
are given in Section 7.

Notations: The notationCN (a,Σ) stands for the multi-
variate complex normal distribution with meana and covari-
ance matrixΣ. Forx ∈ R, the(x)+ is equal tomax(x, 0).
The subscript(·)H represents the Hermitian transpose of a
matrix. The almost sure (a.s.) convergence is denoted by
the symbol

a.s.−−−−→
M→∞

(or, equivalently, by
a.s.−−→). The notation

supp(F ) stands for the support ofF .

2. SYSTEM MODEL

Consider the uplink transmission in a single-cell multi-
user MIMO system withK single-antenna users and a BS
equipped withM antennas. Consider a massive distributed
multi-antenna jamming device equipped withN antennas.
This scenario is depicted in Fig. 1.
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Fig. 1. Distributed jamming of the uplink in a single cell con-
taining K single-antenna users and a massive jamming de-
vices withN antennas.

Let τ be the length of the channel coherence interval in
samples, in which a fixed realization of the channels are ob-
tained. TheM × 1 received vector at the BS at timet =
1, . . . , τ in a coherence interval is

yt = Hxt + H̃x̃t +wt (1)
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wherext ∈ CK×1 is the transmitted data vector with inde-
pendent entries with zero mean and covariance matrixP =
diag(P1, . . . , PK) with P1, . . . , PK representing the powers
(including the corresponding pathlosses) of the transmitted
signals in the home cell;H ∈ CM×K is the channel matrix
between the BS and theK users with independent identically
distributed (i.i.d.) entriesHm,k ∼ CN (0, 1); x̃t ∈ CN×1 is
the jamming signal vector with i.i.d. entries with varianceJ
representing the jamming transmitting power (including the
corresponding pathlosses) at each antennan; H̃ ∈ CM×N is
the channel matrix between the BS and the jammer with en-
triesH̃m,n ∼ CN (0, 1); the additive noise is represented by
the vectorwt ∈ CM×1 with wt ∼ CN (0, σ2IM ). We con-
catenateτ successive samples of the received vectors given
by (1) into the received matrix

Y = HX+ H̃X̃+W (2)

whereY = [y1, . . . ,yτ ] ∈ C
M×τ , X = [x1, . . . ,xτ ] ∈

CK×τ , X̃ = [x̃1, . . . , x̃τ ] ∈ CN×τ , andW = [w1, . . . ,wτ ] ∈
CM×τ .

We assume in the following thatM < N < τ are large,
being in practice of the order of hundreds or thousands. We
define the following asymptotic regimes:

• M/N → c ∈ (0, 1) asM → ∞, N → ∞

• N/τ → c̄ ∈ (0, 1) asN → ∞, τ → ∞

• M/τ → c̃ ∈ (0, 1) asM → ∞, τ → ∞.

Further, the number of usersK is assumed to be fixed asM ,
N , τ → ∞. The results of this paper are based on asymp-
totic spectral analysis of the sample covariance matrix of the
received signal defined by

R̂ ,
1

τ
YYH

and of the sample covariance matrix of the jamming-plus-
noise defined by

Ψ ,
1

τ

(
H̃X̃+W

)(
H̃X̃+W

)H

. (3)

Note that in random matrix theory the transmission model (2)
is described by fixed-rank perturbation models [10] as the
signal matrix is of small rankK with probability one. In
this paper we derive a condition on the jamming powerJ
under which the signal subspace cannot be separated from
the jamming-plus-noise subspace for a given maximum user
power. Notice that this condition is derived under the assump-
tion c ∈ (0, 1) for which the support of the limiting spectral
distribution (l.s.d.) ofFΨ is asymptotically composed of one
interval.

3. MAIN RESULT

The main result of this work is conceptually related to the sep-
arability condition described in the work [9]. We recall that
the separability condition provided in [9] is given by the min-
imum user’s power required in order to separate the signal
subspace from the interference-plus-noise subspace asymp-
totically. In this work, the aim is to provide the minimum jam-
ming power in order to not be able to separate the jamming-
plus-noise subspace from the signal subspace asymptotically.

Theorem 1. Consider the model(2) and let Pmax =
max(P1, . . . , PK). Define on[0,∞) the following function

ỹ(J) ,
J − PmaxM

(c̄− 1)JPmaxM + P 2
maxM

2
.

Let J? = J̄/M whereJ̄ is the smallest positive solution of
the equation

1− σ4c̃ỹ(J)2

ỹ(J)2(1− σ2c̃ỹ(J))2
=

2σ2c̃/c

1− σ2c̃ỹ(J)
Ĩ1(J) +

1

c
Ĩ2(J)

where

Ĩ1(J) =

(√
b̃(J)−

√
ã(J)

)2

4c̄J ỹ(J)2
,

Ĩ2(J) =

(√
ã(J)b̃(J)− 1

)(√
b̃(J)−

√
ã(J)

)2

4c̄J ỹ(J)3
√
ã(J)b̃(J)

with

ã(J) = 1 + σ2Jỹ(J)(1 −
√
c̄)2,

b̃(J) = 1 + σ2Jỹ(J)(1 +
√
c̄)2.

Letλmax be the largest eigenvalue of̂R. Letx? be the upper
bound of the support of the limiting spectral distribution of
Ψ. Then, forJ ≥ J?,

λmax − x? a.s.−−−−→
M→∞

0.
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Fig. 2. Histogram of the eigenvalues of̂R and the l.s.d. ofΨ
(solid line) forJ = J? = −14.3 dB (left) and forJ = −20
dB (right).
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From this theorem, for a given maximum power of the
users, we obtain the minimum jamming power required to
avoid separability of the signal subspace from the jamming-
plus-noise subspace asymptotically. This is depicted in Fig 2,
where we illustrate the empirical eigenvalue distributions
(e.s.d.) ofR̂ and the l.s.d. ofΨ under the non-separability
condition J = J? and under separability condition for
J < J?. The simulations are performed forK = 2,
N = 300, M = 200, τ = 1000, P1 = P2 = −10 dB,
andσ2 = 0 dB. The plot on the left confirms the result of the
above theorem stating that the separability does not happen
for J ≥ J?. From the plot on the right, we see that the sig-
nal eigenvalues are separated from the jamming-plus-noise
eigenvalues, as the jamming power is too small.

The main steps of the proof of Theorem 1 are given in the
next section.

4. MAIN STEPS OF THE PROOF OF THEOREM 1

4.1. Preliminary results

Let us first consider the jamming covariance matrixΓ =
1
τ
H̃X̃X̃HH̃H. Note that the l.s.d. ofM

τ
X̃X̃H is given by a

scaled1 Marčenko–Pastur (MP) distribution̄F [11] with the
support given by the interval[a, b] with a = σ2JM(1−

√
c̄)2

andb = σ2JM(1 +
√
c̄)2. By applying the results from [12]

we can characterize the l.s.d. ofΓ given by the following
theorem:

Theorem 2. Let Γ = 1
τ
H̃X̃X̃HH̃H where all the matrices

are defined as in(2). AsM → ∞, the e.s.d. ofΓ converges
to FΓ with Stieltjes transform (ST)2 mΓ satisfying, for any
z ∈ C \ supp(Γ),

mΓ(z) =

(
z +

1

c

∫
tdF̄

1 + tmΓ(z)

)−1

whereF̄ with density given by

f̄(t) =

√
(t− a)+(b− t)+

2πJMc̄t

with c̄ ∈ (0, 1).

From the above result and [13], we get the following the-
orem describing the upper bound ofsupp(Γ):

Theorem 3. The upper bound ofΓ is given by

xo = − 1

mo
Γ

+
1

c

(√
1 + bmo

Γ −
√
1 + amo

Γ

)2

4c̄JM(mo
Γ)

2

1Note thatJ is order of magnitude of1/M so that the interval[a, b] is
compact.

2The STmF of a spectral distributionF with support inR denoted by
supp(F ) is defined bymF (z) =

∫
(t − z)−1dF (t). It completely charac-

terizes the spectral distributionF .

wheremo
Γ is the unique solution in(−1/b, 0) of the equation

∫ b

a

(
mΓt

1 +mΓt

)2

dF̄ =
1

c
. (4)

From the above theorem we havemo
Γ, the ST ofFΓ at the

pointxo, useful in the following.
Recall that asc ∈ (0, 1), supp(FΨ) is asymptotically

composed of one interval. The following theorem describes
the upper bound of the support ofΨ. It is based on the results
of [13] and [14].

Theorem 4. Let mo
Γ be defined by(4). The upper bound of

FΨ is given by

x? =
σ2(1− c̃)m?

Ψ − 1

m?
Ψ(1 + σ2c̃m?

Ψ)
+

1/c

(1 + σ2c̃m?
Ψ)2

∫
tdF̄

1 + y(m?
Ψ)t

wherem?
Ψ is the unique solution in(mo

Γ/(1− σ2c̃mo
Γ), 0) of

the equation

1− σ4c̃y(m)2

y(m)2(1− σ2c̃y(m))2
=

2σ2c̃/c

1− σ2c̃y(m)
I1(m) +

1

c
I2(m)

(5)
where

I1(m) =

∫
tdF̄

1 + y(m)t
, I2(m) =

∫
t2dF̄

(1 + y(m)t)2

with

y(m) =
m

1 + σ2c̃m
.

Proof. LetFΓ be the l.s.d. ofΓ defined as in Theorem 2. Let
Ψ be defined by (3). From [14], asM → ∞, the e.s.d. ofΨ
converges toFΨ whose STmΨ(z), for z ∈ C+, is the unique
solution of

mΨ(z) =

∫
dFΓ(t)

t
1+σ2 c̃mΨ(z) − (1 + σ2c̃mΨ(z)) z + σ2(1− c̃)

such thatmΨ(z) ∈ C+ and zmΨ(z) ∈ C+. Let mΨ(x)
be the restriction ofmΨ(z) toR. Applying the results of [13]
and Theorem 2,x? coincides with the infimum of the function

x(mΨ) =
σ2(1− c̃)mΨ − 1

mΨ(1 + σ2c̃mΨ)
+

1/c

(1 + σ2c̃mΨ)2

∫
tdF̄

1 + y(mΨ)t
(6)

whose restriction to the interval(m?
Ψ, 0) coincides with

the inverse with respect to composition of the restriction
of mΨ(x) to (x?, 0). By deriving (6) after some calculations
we get the result.

Note that from the above theoremm?
Ψ is the ST at the

pointx? expressed asm?
Ψ = limx→x? mΨ(x).
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4.2. Core of the proof

The following result provides a non-separability condition of
the jamming-plus-noise and the signal subspaces, given a sig-
nal powerPmax = max(P1, . . . , PK). The proof is based on
the results [9] involvingx? andm?

Ψ given by Theorem 4.

Theorem 5. Consider the model(2) and letm?
Ψ be defined

as in(5). Define

y? ,
m?

Ψ

1 + σ2c̃m?
Ψ

.

Define

J? ,
P 2
maxM

2y? + PmaxM

PmaxM(1− c̄)y? + 1
.

Let J ≥ J? and letλmax be the largest eigenvalue of̂R.
Then,

λmax
a.s.−−−−→

M→∞
x?.

The proof is finalized using the result of the above theo-
rem by defining̃y(J) as a function ofJ and injecting it into
the expression (5) (replacingy(m) by ỹ(J)).

5. PERFORMANCE ANALYSIS

The performance under the system model (2) is analyzed in
terms of an achievable net spectral efficiency under linear de-
tection. We denote byτp ≥ K the length of the pilot se-
quence. A spectral efficiency [15] for userk = 1, . . . ,K is
given by

Sk =
(
1− τp

τ

)
log2


1 +

∣∣E
[
bH

khk

]∣∣2 Pk

E[‖ȳk‖
2]

τ−τp
−
∣∣E

[
bH

khk

]∣∣2 Pk




(7)
wherebk ∈ CK×1 is the detection vector,hk ∈ CK×1 is the
kth column ofH, andȳk = bH

kY ∈ CK×τd is the filtered
received vector for userk, with τd = τ − τp. An approximate
minimum mean square error (MMSE) detection filter for user
k = 1, . . . ,K is given by

bMMSE
k = ĥH

kP
1

2

(
P

1

2 ĥH

k ĥkP
1

2 + σ2IK

)−1

whereĥk ∈ CK×1 is thekth column of the least square esti-
matorĤ given by

Ĥ =
1

τp
YpX

H

pP
− 1

2

with Xp ∈ CK×τp the matrix with orthogonal user pilots and
Yp ∈ C

M×τp the received pilot matrix.

6. NUMERICAL RESULTS

We provide simulation results forK = 2, M = 32, N = 64,
τ = 256, τp = 2. The normalized received user powers are
equal toP1 = P2 = P = 0 dB and the noise variance is
equal toσ2 = 0 dB. For this scenario, by applying the re-
sults of Theorem 1, we findJ? = −4.5 dB. In Fig. 3, the
performance of the jamming (Jamming) is drawn in terms of
achievable net spectral efficiency (bit/s/Hz) given by (7) ver-
sus jamming powerJ in dB for user 1 (equivalent to user 2 as
the users have the same power). The results are compared to
the achievable net spectral efficiency for the scenario without
jamming (Jamming free) and for a blind jamming rejection
method (Jamming rejection) similar to the algorithm of [1]
consisting in projecting the received data onto the signal sub-
space generated byK largest eigenvalues of̂R. We observe
that the jamming rejection approach leads to an almost zero
spectral efficiency forJ > J?, confirming the rejection al-
gorithm is bound to fail whenJ exceedsJ?. Moreover, it
is shown that forJ close toJ?, it is better to ignore jam-
ming than to use blind rejection algorithms since the signal
and jamming subspaces cannot be separated. Notice that for
low values ofJ , the jamming rejection algorithm outperforms
the other methods as it eliminates not only the jamming but
also the noise by projecting the received signal to the signal
subspace (see [1] for discussions).
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Fig. 3. Achievable net spectral efficiency of user 1 (or 2)
versusJ (dB).

7. CONCLUSIONS

We provided an asymptotic condition on the jamming power
under which the signal subspace cannot be separated from the
jamming-plus-noise subspace. Numerical results indicated
that this condition can be used to predict the regime in which
blind jamming mitigation schemes, such as the one in [1], can
be successfully applied.
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