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ABSTRACT the signal subspace is separable from the jamming/noise sub
_ _ o _ _ spaces.
Consider the upllnk transmission of a S|ng|e'Ce” multi- In this paper, we use random matrix theory to establish a

user multiple-input multiple-output (MIMO) system with fundamental asymptotic condition on the jamming power to
K single-antenna users and a base station (BS) equipped Wifevent the use of blind subspace-based methods for jamming
a very large number of antennas denoted\ly Consider a rejection such as the one in [1], which the BS would apply if it
jamming device withV > M distributed antennas attempt- knows that jamming exists. This analysis is complementary t
ing to deteriorate the communication between the users angr results in [9], derived for a different but related prebl

the BS. We propose an asymptotic condition on the jamminghe specific signal model of concern is given in Section 2,
power under which the jamming-plus-noise subspace ovegnd the main result of the paper is Theorem 1. Conclusions
laps with the signal subspace. Under this condition, exgsti re given in Section 7.

blind jamming rejection methods, such as the one in [1], fail  Notations: The notationCA/(a, &) stands for the multi-
The proposed results are based on the application of resuligriate complex normal distribution with mearand covari-

from large-dimensional random matrix theory. ance matrixz. Forz € R, the(z)" is equal tomax(z,0).
Index Terms— Massive MIMO, jamming attacks, ran- The subscript-)" represents the Hermitian transpose of a
dom matrix theory, eigenvalue spectrum matrix. The almost sure (a.s.) convergence is denoted by

the symbol% (or, equivalently, by®%). The notation
—o0

supp(F') stands for the support df.
1. INTRODUCTION pp(F) PP

Reciprocity-based Massive (MaMIMO), operating in TDD 2. SYSTEM MODEL

[2], is currently the most compelling 5G wireless_acc_:esla{ec Consider the uplink transmission in a single-cell multi-
nology. A sequence of papers [3, 4, 5, 6] have highlighted thgser viMO system withi single-antenna users and a BS

susceptibility of MaMIMO to jamming attacks that specif- o4 inned with)/ antennas. Consider a massive distributed

ically target the uplink training phase, effectively ciegt | i-antenna jamming device equipped with antennas.
artificial pilot contamination which destroys the channel-l-hiS scenario is depicted in Fig. 1.

estimates and thereby, potentially, severely degradderper
mance in closed-loop operation. (The “reverse” problem, of 4 . BS [
using MaMIMO technology to jam a conventional wireless P, Py
link, was studied in [7].) This matter is important, in thght . T
of the foreseen widespread adoption of MaMIMO technology jammer 1 cer 1 J 0
in standards, and amid increasing concerns that intedtiona m m sk
jamming represents an increasing threat to wireless infras jammer n jammer N
tructure [8]. , . , ) L .

In the recent previous work [1], we considered the sce!:'.g'.l' [;éstr]bulte_djammmg of the u%hnk n agmgl_e cell_conc-i i
nario of MaMIMO with a distributed jammer, potentially con- ta_unmg i singie antenna users and a massive jamming de
sisting of transmitters that create users'-like signalanira vices with V- antennas.
practical perspective, this is a threatening setup as tted-lo

ization and disarming of such jammers could be very dlfrl'samples, in which a fixed realization of the channels are ob-

cult when they smartly adjust their transmission powers. Ir{ained Thel x 1 received vector at the BS at tinte—
[1], we proposed a subspace-based algorithm for blind de- .rin a coherence interval is

tection and mitigation of such distributed jamming attacks ’" B
in MaMIMO. This algorithm works particularly well when yv: = Hxy + HX; + wy (1)

Let 7 be the length of the channel coherence interval in

978-1-5090-4117-6/17/$31.00 ©2017 IEEE 3454 ICASSP 2017



wherex; € CKX*! s the transmitted data vector with inde- 3. MAIN RESULT

pendent entries with zero mean and covariance m#trix

diag(Py, ..., Px) with P, ..., Px representing the powers The mainresult of this work is conceptually related to the-se
(including the corresponding pathlosses) of the transahitt arability condition described in the work [9]. We recall tha
signals in the home celH € CM*K s the channel matrix the separability condition provided in [9] is given by themmi
between the BS and th€ users with independent identically imum user’'s power required in order to separate the signal
distributed (i.i.d.) entriedl,, x ~ CN(0,1); x; € CN*1is subspace from the interference-plus-noise subspace asymp
the jamming signal vector with i.i.d. entries with variange totically. In this work, the aim is to provide the minimum jam
representing the jamming transmitting power (including th ming power in order to not be able to separate the jamming-
corresponding pathlosses) at each antenid € CM*N js  plus-noise subspace from the signal subspace asymplyptical
the channel matrix between the BS and the jammer with eNrpaorem 1. Consider the model2) and let P, —

triesﬁmm, ~ CN(0,1); the additive noise is represented by max(Py,. .., Px). Define or0, o) the following function
the vectorw, € CM*! with w; ~ CN(0,0%1,,). We con-

catenater successive samples of the received vectors given G(J) 2 J — PuaxM .
by (1) into the received matrix (¢ = 1)J Pmax M + P2, M?
~ < Let J* = J/M whereJ is the smallest positive solution of
Y =HX+HX+W 2 the equation
whereY = [yi,...,y,] € CM*", X = [x1,...,%,] € 1—oteg(J)? 20%¢/c -

1 -
~ = I -1
CEXT X = [X1,...,%,] € CNX", andW = [wy,...,w,]| € g(J)2(1 —o2ey(J))?  1—oc2ey(J) 1)+ c 2()

MxT
cHx . ) where
We assume in the following tha/ < N < 7 are large,

being in practice of the order of hundreds or thousands. We /13 I — Jalh
define the following asymptotic regimes: ~ < () a(J)

2
)

/ o) W) =550
e M/N —ce (0,1)asM — oo, N = oo
] — (Vawin -1) (\/w)—m)Q
e N/T—¢e€(0,1)asN — oo, 7 — 0 () = ; Jsm
4eJy a
o M/7— e (0,1)asM — oo, T — oo. N g(J)3\ a(J)b(J)
wit

Further, the number of usefs is assumed to be fixed ag, Sy 2 7~ A2
N, 7 — oo. The results of this paper are based on asymp- aN(J) =1 02‘]3{(])(1 \/E_) 2’
totic spectral analysis of the sample covariance matrixef t b(J) =1+ J5(J)(1 + Ve)*.

received signal defined by Let \pmax be the largest eigenvalue B. Letz* be the upper

bound of the support of the limiting spectral distributioh o

~ 1
R 2 ;YYH . Then, forJ > J*,
. . . . Amax — T —=5 0.
and of the sample covariance matrix of the jamming-plus- M—c0
noise defined by
1 /o~ . H 2-1072 I 1.5-1072 - :
\pé—(HX+w) (HX+W) . 3)
T
Note that in random matrix theory the transmission model (2) 5 S
is described by fixed-rank perturbation models [10] as the © e
signal matrix is of small rank< with probability one. In
this paper we derive a condition on the jamming powler
. : 0 0
under which the signal subspace cannot be separated from 0 20 40 60 0 10 20 30 40
the jamming-plus-noise subspace for a given maximum user Eigenvalues oft Eigenvalues oft

power. Notice that this condition is derived under the agsum R

tion ¢ € (0,1) for which the support of the limiting spectral Fig. 2. Histogram of the eigenvalues B and the |.s.d. of¢
distribution (l.s.d.) off'¥ is asymptotically composed of one (solid line) forJ = J* = —14.3 dB (left) and forJ = —20
interval. dB (right).
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From this theorem, for a given maximum power of thewherem{. is the unique solution i—1/b, 0) of the equation
users, we obtain the minimum jamming power required to
avoid separability of the signal subspace from the jamming-

plus-noise subspace asymptotically. This is depictedgrFi
where we illustrate the empirical eigenvalue distribusion
(e.s.d.) ofR and the |.s.d. o under the non-separability
condition J J* and under separability condition for
J < J*. The simulations are performed fd&f = 2,
N = 300, M = 200, 7 = 1000, P, = P, = —10 dB,
ando? = 0 dB. The plot on the left confirms the result of the

mrt
1+ mrt

dF

L @)
C

[ ()
From the above theorem we havé,, the ST ofF'T" at the
pointx?, useful in the following.
Recall that as: € (0,1), supp(F¥) is asymptotically

composed of one interval. The following theorem describes
the upper bound of the support¥f. It is based on the results

above theorem stating that the separability does not happef [13] and [14].

for J > J*. From the plot on the right, we see that the sig-

nal eigenvalues are separated from the jamming-plus-noisgheorem 4. Let m¢ be defined by4). The upper bound of

eigenvalues, as the jamming power is too small.

FY is given by

The main steps of the proof of Theorem 1 are given in the

next section.

4. MAIN STEPS OF THE PROOF OF THEOREM 1

4.1. Preliminary results

Let us first consider the jamming covariance maffix=
1HXXHH". Note that the I.s.d. of£XX" is given by a
scaled Mar¢enko—Pastur (MP) distributioR [11] with the
support given by the intervéd, b] with a = o2 J M (1 — 1/¢)?
andb = 02JM (1 + /¢)2. By applying the results from [12]
we can characterize the |.s.d. Bfgiven by the following
theorem:

Theorem 2. LetT = LHXX"H" where all the matrices
are defined as if2). AsM — oo, the e.s.d. of" converges
to FT with Stieltjes transform (S¥)mr satisfying, for any

z € C\ supp(I'),
)

whereF with density given by

tdF
1+ tmrp(2)

mr(z) = <Z+

(t—a)t(b-—)*
2w JMet

f(t)=

with¢ € (0,1).

From the above result and [13], we get the following the-

orem describing the upper boundsafpp(T'):
Theorem 3. The upper bound df is given by

(VIFbmg — \/TFamg)’
4eJ M (mg)?

0—_

1 1
T Z
c

o
mp

INote that.J is order of magnitude of /M so that the intervala, b] is
compact.

2The STm of a spectral distributior” with support inR denoted by
supp(F) is defined bymp(2) = [(t — 2) "1dF(t). It completely charac-
terizes the spectral distributiafi.

tdF
1+y(my)t

1/e

(1+02¢m},)?

. o*(l—¢)my —1
— omb, (1 + o26my,)

/

wheremy, is the unique solution img /(1 — o2émg.), 0) of
the equation
1 —o*éy(m)? B 202¢/c
y(m)2(1 - o2ey(m))? 1 - o%cy(m)

Ii(m) + %Ig(m)

(5)
where
won = [ 0 = |
with
m
v = T e

Proof. Let FT be the |.s.d. oI defined as in Theorem 2. Let
W be defined by (3). From [14], @&/ — oo, the e.s.d. ofr
convergestd¥ whose STmy(z), for 2 € C*, is the unique
solution of

dFT(t)

/ ! ) —(1+o02emg(2)) 2+ 02(1 — @)

1+o02émw (2

mw(2)

such thatmg(z) € CT andzmg(2) € C*. Let mg(x)
be the restriction ofng () to R. Applying the results of [13]
and Theorem 2;* coincides with the infimum of the function

 ?(1-Omg — 1 1/e tdF
r(me) = mg(l+o2emy) (14 0%emg)? / 1+ y(me)t
(6)

whose restriction to the intervalmy,,0) coincides with
the inverse with respect to composition of the restriction
of mg (x) to (z*,0). By deriving (6) after some calculations
we get the result. O

Note that from the above theoremy, is the ST at the
pointz* expressed asiy, = lim,_, .« mw(z).
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4.2. Core of the proof 6. NUMERICAL RESULTS

The following result provides a non-separability condit@f e provide simulation results fd¢ = 2, M = 32, N = 64,
the jamming-plus-noise and the signal subspaces, givep a si- — 256, 7, = 2. The normalized received user powers are
nal powerPr,x = max(P, ..., Px). The proofis based on equal toP, = P, = P = 0 dB and the noise variance is
the results [9] involving:* andmy, given by Theorem 4. equal too? = 0 dB. For this scenario, by applying the re-

] . sults of Theorem 1, we find* = —4.5 dB. In Fig. 3, the
Theorem 5. Consider the modgP) and letmy, be defined  performance of the jamming (Jamming) is drawn in terms of
as in(5). Define achievable net spectral efficiency (bit/s/Hz) given by @)v
sus jamming powey in dB for user 1 (equivalent to user 2 as

y* 2 % the users have the same power). The results are compared to
1+o%emy the achievable net spectral efficiency for the scenarioawith
) jamming (Jamming free) and for a blind jamming rejection
Define ) ) method (Jamming rejection) similar to the algorithm of [1]
g 2 BaaxM7y" + Poax M consisting in projecting the received data onto the sigulad s
ProaxM(1 - e)y* + 1 space generated by largest eigenvalues @&. We observe

that the jamming rejection approach leads to an almost zero
spectral efficiency foJ > J*, confirming the rejection al-
gorithm is bound to fail whery exceeds/*. Moreover, it
Amax ﬁ x*. is shown that forJ close toJ*, it is better to ignore jam-
ming than to use blind rejection algorithms since the signal
The proof is finalized using the result of the above theoand jamming subspaces cannot be separated. Notice that for
rem by definingj(.J) as a function of/ and injecting it into  low values of/, the jamming rejection algorithm outperforms
the expression (5) (replacingm) by g(J)). the other methods as it eliminates not only the jamming but
also the noise by projecting the received signal to the $igna
subspace (see [1] for discussions).

LetJ > J* and let \,.x be the largest eigenvalue .
Then,

5. PERFORMANCE ANALYSIS

4A\A\A\Aﬁa\

o A ANAC AL S A S A A A v AN VANAC AN S S A v

The performance under the system model (2) is analyzed i
terms of an achievable net spectral efficiency under linear d
tection. We denote by, > K the length of the pilot se-
guence. A spectral efficiency [15] for usker=1,..., K is
given by

|E [bi'h,]|* P

S, = (1 — %) log,

Achievable net spectral efficiency (bit/s?Hz)

B[y« 2 2
A je i) 2 .
’ @) e Jamming free k
whereb,, € CX*1 is the detection vectoh, € CX*1isthe . —s—Jamming
_ H Kxr . —a— Jamming rejection
kth column ofH, andy, = b,y Y € C**™ is the filtered g g
received vector for usdr, with 7; = 7 — 7,,. An approximate 0 : \ s 4
minimum mean square error (MMSE) detection filter for user —30 —20 —10 0 10
k=1,..., K isgiven by J (dB)
1 Fig. 3. Achievable net spectral efficiency of user 1 (or 2)
A~ 1 1~ ~ 1
bl\k/IMSE _ h,E'Pi (pgh]':hkpa + O'QIK) versus/ (dB).
whereﬁk € CKX*1is thekth column of the least square esti- 7. CONCLUSIONS
matorH given by
We provided an asymptotic condition on the jamming power
~ 1 Hyy— 1 under which the signal subspace cannot be separated from the
H=—-YXP N ; : -
Tp jamming-plus-noise subspace. Numerical results indicate

that this condition can be used to predict the regime in which
with X, € CE*7» the matrix with orthogonal user pilots and blind jamming mitigation schemes, such as the one in [1], can
Y, € CM*7» the received pilot matrix. be successfully applied.
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