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Abstract—In this paper, we consider using time-of-arrival
(TOA) measurements from single moving receiver to locate a
stationary source which emits periodical signal. First, we give
the TOA measurements model and deduce the Cramér-Rao lower
bounds (CRLB). Then, we formulated the maximum likelihood
estimation (MLE) problem. We use the semidefinite programming
(SDP) method to relax the nonconvex MLE problem into convex
problem. It is shown that the original SDP algorithm can not
provide a high-quality solution. We jointly add second-order-cone
(SOC) constraints and penalty term to improve the tightness of
the original SDP algorithm. Besides, we also consider the presence
of receiver position errors, and develop the robust localization
algorithm. Numerical simulations are conducted to demonstrate
the localization performance of the proposed algorithms by
comparing with the CRLB.

Index Term-Semidefinite programming (SDP), single moving
receiver, source localization, time-of-arrival (TOA)

I. INTRODUCTION

THE problem of locating a source from time-of-arrival

(TOA) measurements or from time-difference-of-arrival

(TDOA) measurements using several spatial separated sensors

have received significant attention in the signal processing

literature because of their importance to many application-

s including wireless sensor networks (WSNs) [1], wireless

communications [2], intelligent transport [3], and navigation

[4]. The TOA measurements require the receiving sensors

and source to be synchronized, and the TDOA measurements

require the receiving sensors to be synchronized.

For non-cooperative emitter, single platform localization

using Doppler and direction-of-arrival (DOA) measurements

have been discussed by Becker [5]. In [6], Elad et al. propose

a stationary source localization method using TOA measure-

ments from single moving receiver. In [6], it is assumed

that the signal contains a waveform that appears periodically,

besides, the waveform and period are known to the receiver.

Using the known signal waveform, the TOA can be estimated

by correlating the known signal with the receiving signal; and

using the known signal period, the absence of simultaneous

measurements collected by multiple stationary stations can be

compensated [6].
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In this paper, we also consider using single moving receiver

to locate a stationary source which emits periodical signal

with known signal waveform. However, the signal period is

unknown in our research.

The rest of this paper is organized as follows. In Section II,

the TOA measurements model is described, and the CRLB is

deduced. In Section III, we use the semidefinite programming

(SDP) technique to relax the nonconvex maximum likelihood

estimator (MLE) problem into convex problem, and jointly

use second-order-cone (SOC) constraints and penalty term to

improve the tightness of the SDP formulation. In Section IV,

we consider the presence of receiver position errors, and then

propose two robust algorithms. Simulation results are given in

Section V to evaluate the location estimation performance of

the proposed algorithms by comparing with CRLB. Finally,

we give the conclusions in Section VI.

Notation: Bold uppercase and bold lowercase letters denote

matrices and vectors, respectively. Im is the m ×m identity

matrix, 1m is the column vector of m ones, and 0m,n is the

m×n zero matrix. ‖·‖ and ‖·‖F are the l2 norm and Frobenius

norm, respectively. For arbitrary symmetric matrices of equal

size, A � B means that A−B is positive semidefinite.

II. TOA MEASUREMENTS MODEL AND CRLB

Consider a stationary emitter transmitting periodical signal

with period τ , and the unknown position is u = [x, y]T

(for simplicity, we consider the 2-D scenario, the extension

to 3-D case is straight forward). Assuming the source begin

to transmit periodical signal at t0, and the moving receiver

receives the signal waveform at t1. The position of the moving

receiver at t1 is s1 = [x1, y1]
T which is known, for example,

from the GPS. After counting N waveforms, the receiver

receives the new signal waveform at t2 and the position

of the moving receiver at t2 is s2 = [x2, y2]
T ; so after

counting N(M − 1) waveforms, the receiver receives the new

waveform at tM and the position of the moving receiver at

tM is sM = [xM , yM ]T . Consequently, we can write the TOA

measurement equations (In this paper, we assume that the TOA

is estimated, and our focus is using the estimated TOA to

locate the position of emitter)

ti = t0 + (i− 1)Nτ +
‖u− si‖

c
+ ei, i = 1, 2, . . . ,M. (1)
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where c is the signal propagation speed, and ei is the TOA

measurement noise. In order to eliminate ambiguity, it is

assumed that ‖u− si‖ ≤ τc [6]. In (1), setting T = Nτ

and multiplying both sides by c, we can obtain

ri = t0c+ (i− 1)Tc+ ‖u− si‖+ ni, i = 1, 2, . . . ,M. (2)

where ri is pseudo-range measurement, and ni = eic. For ease

of analysis, we assume that ni is a zero-mean white Gaussian

variable with known variance σ2
i . From (2),we can write the

MLE problem:

min
u,t0,T

M
∑

i=1

(ri − ‖u− si‖ − t0c− (i− 1)Tc)2

σ2
i

(3)

where u, t0 and T are the optimization parameters. The above

problem is nonlinear and nonconvex, and the MLE is hard to

achieve.

Given the TOA measurement model, the performance of

any unbiased estimate of u would be limited by the CRLB. In

order to deduce the CRLB of the TOA measurement model,

we set the unknown parameter vector as θ = [uT , t0, T ]
T .

The Fisher information matrix is calculated as [7]

I(θ) = H(θ)TQH(θ) (4)

where Q = diag([σ−2
1 , σ−2

2 , . . . , σ−2

M ]), and

H(θ) =







x−x1

‖u−s1‖
y−y1

‖u−s1‖
c 0

...
...

...
...

x−xM

‖u−sM‖
y−yM

‖u−sM‖
c (M − 1)c






(5)

The CRLB of the source position u is computed as

V ar(u) ≥ [I−1(θ)]1,1 + [I−1(θ)]2,2 (6)

III. LOCALIZATION ALGORITHM

In this section, we describe how a SDP method can be used

to solve problem (3). Note that (3) can be expressed as the

matrix-vector form

min
u,d,t0,T

(r− d− t0c1M − Tcq)TQ(r− d− t0c1M − Tcq)

(7a)

s.t. di = ‖u− si‖ , i = 1, 2, . . . ,M. (7b)

where d = [d1, d2, . . . , dM ]T , r = [r1, r2, . . . , rM ]T , q =
[0, 1, . . . ,M − 1]T . Set h = [t0, T ]

T , and F = [1M ,q].
Therefore, (7) can be expressed as

min
u,d,h

(r− d− cFh)TQ(r− d− cFh) (8a)

s.t. di = ‖u− si‖ , i = 1, 2, . . . ,M. (8b)

Instead of finding u, t0 and T jointly, we find the optimum t0
and T as a dependent function of u. Letting the gradient of

the objective function in (8a) with respect to h to zero then

gives

−2cFTQ(r− d− cFh) = 0 (9)

As a result, the optimum estimation of h is

ĥ =
1

c
(FTQF)−1FTQ(r− d) (10)

Next, substituting ĥ into (8), we can obtain

min
u,d

(r− d)TG(r− d) (11a)

s.t. di = ‖u− si‖ , i = 1, 2, . . . ,M. (11b)

where G = (IM − F(FTQF)−1FTQ)TQ(IM −
F(FTQF)−1FTQ). We can see that (11a) is convex

with respect to the unknown variables d. However, (11b) is

nonconvex with respect to the unknown variables d and u.

Using the semidefinite positive relaxation (SDR) [8] method,

we can obtain

min
d,D,u,ys

tr(DG)− 2rTGd+ rTGr (12a)

s.t. Di,i = ys − 2uT si + sTi si, i = 1, 2, . . . ,M. (12b)

Di,j ≥ |ys − uT (si + sj) + sTi sj |, 1 ≤ i < j ≤M.

(12c)
[

1 dT

d D

]

� 0M+1,M+1 (12d)

[

I2 u

uT ys

]

� 03,3 (12e)

where (12c) is deduced by the Cauchy-Schwartz inequality.

The above convex optimization formulation is not tight. The

reason is that G is singular [9]. In order to improve the

tightness of (12), similar to [9], we jointly add SOC constraints

and penalty term in (12). First, adding the penalty term ηtr(D)
in the objective function can let (G+ ηI) be definite positive.

Second, adding SOC constraints [10]

‖u− si‖ ≤ di, 1 ≤ i ≤M. (13)

that make the whole constraints be tight.

Finally, we obtain an improved SDP algorithm

min
d,D,u,ys

tr(DG)− 2rTGd+ rTGr+ ηtr(D) (14a)

s.t. Di,i = ys − 2uT si + sTi , i = 1, 2, . . . ,M. (14b)

‖u− si‖ ≤ di, i = 1, 2, . . . ,M. (14c)

Di,j ≥ |ys − uT (si + sj) + sTi sj |, 1 ≤ i < j ≤M.

(14d)
[

1 dT

d D

]

� 0M+1,M+1 (14e)

[

I2 u

uT ys

]

� 03,3 (14f)

where η is a regularization parameter. A suitable selection of

η is important to achieve a good estimation. However, it is not

easy to obtain the opatimal η [9]. As a result, similar to [9], we

take K constant values ηk, k = 1, 2, . . . ,K to compute the

(14), and then use the estimated results ûk, k = 1, 2, . . . ,K
to select the optimal û that give the minimum Jk

Jk = (r− d̂k)
TG(r− d̂k), k = 1, 2, . . . ,K. (15)

where d̂k = [d̂k1, d̂k2, . . . , d̂kM ]T , and d̂ki = ‖ûk − si‖ , i =
1, 2, . . . ,M .
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IV. ROBUST LOCALIZATION ALGORITHMS WITH

RECEIVER POSITION ERRORS

In the preceding development of (12) and (14), we assume

that the positions of receiver are accurate. However, in practice

the receiver positions may not be exact because of the imper-

fection of navigation system. In this section, we will focus on

developing robust localization algorithm under the presence of

receiver position errors.

Under the condition of receiver position errors, the receiver

positions can be expressed as

ai = si + βi, i = 1, 2, . . . ,M. (16)

where βi denotes the zero-mean white Gaussian vector with

known covariance δ2i I2. Besides, we assume that ni and βi

are mutually independent. We can write the MLE problem:

min
u,si,t0,T

M
∑

i=1

(ri − ‖u− si‖ − t0c− (i− 1)Tc)2

σ2
i

+
M
∑

i=1

‖ai − si‖2
δ2i

(17a)

where u, si, t0 and T are the optimization parameters.

Next, we will deduce the CRLB under receiver posi-

tion errors. Set the unknown parameter vector as κ =
[uT , t0, T, s

T
1 , s

T
2 , . . . , s

T
M ]T . The Fisher information matrix of

κ is calculated as [7]

I(κ) = I1(κ) + I2(κ) (18)

where I1(κ) = P1(κ)QPT
1 (κ), I2(κ) = P2(κ)WPT

2 (κ),
W = diag([δ−2

1 , δ−2
1 , δ−2

2 , δ−2
2 , . . . , δ−2

M , δ−2

M ]),

P1(κ) =

























u−s1
‖u−s1‖

u−s2
‖u−s2‖

. . . u−sM
‖u−sM‖

c c . . . c

0 c . . . (M − 1)c
− u−s1
‖u−s1‖

02,1 . . . 02,1

02,1 − u−s2
‖u−s2‖

. . . 02,1

...
...

. . .
...

02,1 02,1 . . . − u−sM
‖u−sM‖

























(19)

and

P2(κ) =























02,2 02,2 . . . 02,2

01,2 01,2 . . . 01,2

01,2 01,2 . . . 01,2

I2 02,2 . . . 02,2

02,2 I2 . . . 02,2

...
...

. . .
...

02,2 02,2 . . . I2























(20)

The CRLB of the source position u is computed as

V ar(u) ≥ [I−1(κ)]1,1 + [I−1(κ)]2,2 (21)

Note that (17) can be written in the matrix-vector form

min
u,si,t0,T

(r− d)TG(r− d) +
∥

∥

∥
(A−X(:, 2 : M + 1))W

1

2

1

∥

∥

∥

2

F

(22a)

s.t. di = ‖X(:, 1)−X(:, i+ 1)‖ , i = 1, 2, . . . ,M.

(22b)

where A = [a1,a2, . . . , aM ], X = [u, s1, s2, . . . , sM ], W1 =
diag([δ−2

1 , δ−2
2 , . . . , δ−2

M ]). Using the SDR [8] method, we can

obtain

min
d,D,X,Y

tr(DG)− 2rTGd− 2tr(W1A
TX(:, 2 : M + 1))

+ tr(W1Y(2 : M + 1, 2 : M + 1)) (23a)

s.t. Di,i = Y(1, 1)− 2Y(1, i+ 1) +Y(i+ 1, i+ 1),

i = 1, 2, . . . ,M. (23b)

Di,j ≥ |Y(1, 1)−Y(1, i+ 1)−Y(1, j + 1)

+Y(i+ 1, j + 1)|, 1 ≤ i < j ≤M. (23c)

D � ddT (23d)

Y � XTX (23e)

Similar to the derivation of (14), we can obtain the modified

form of (23)

min
d,D,X,Y

tr(DG)− 2rTGd− 2tr(WATX(:, 2 : M + 1))

+ tr(WY(2 : M + 1, 2 : M + 1)) + ηtr(D) (24a)

s.t. Di,i = Y(1, 1)− 2Y(1, i+ 1) +Y(i+ 1, i+ 1),

i = 1, 2, . . . ,M. (24b)

‖X(:, 1)−X(:, i+ 1)‖ ≤ di, i = 1, 2, . . . ,M.

(24c)

Di,j ≥ |Y(1, 1)−Y(1, i+ 1)−Y(1, j + 1)

+Y(i+ 1, j + 1)|, 1 ≤ i < j ≤M. (24d)
[

1 dT

d D

]

� 0M+1,M+1 (24e)

[

I2 X

XT Y

]

� 0M+3,M+3 (24f)

Similar to [9], we take K constant values ηk, k = 1, 2, . . . ,K
to compute the (24), and then use the estimated results

X̂k, k = 1, 2, . . . ,K to select the optimal û = X̂(:, 1) that

give the minimum Jk

Jk = (r− d̂k)
TG(r− d̂k), k = 1, 2, . . . ,K. (25)

where d̂k = [d̂k1, d̂k2, . . . , d̂kM ]T , and d̂ki =
∥

∥

∥
X̂k(:, 1)− ai

∥

∥

∥
, i = 1, 2, . . . ,M .

V. SIMULATION RESULTS

In this section, we conduct several numerical simulations to

demonstrate the performance of the four proposed SDP algo-

rithms: (12) (label as Proposed-1), (14) (label as Proposed-2),

(23) (label as Proposed-3) and (24) (label as Proposed-4). The

four SDP algorithms are implemented by CVX toolbox [11]

using SDPT3 as a solver [12]. 1000 Monte Carlo realizations

were done in the following simulations.
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We let the receiver moving in a 2-dimensional plane,

the signal period τ is set to 1ms , and the number N

between two TOA measurements is set to 4000, so the

corresponding T = N × τ is 4s. The emitter source starting

transmission time t0 is drawn from an uniform distribution

[0, 1]s. The receiver moving trajectory is a count-clockwise

circle, and the positions of receiver at different measurement

times are: [400, 0]Tm, [200, 200
√
3]Tm, [−200, 200

√
3]Tm,

[−400, 0]Tm, [−200,−200
√
3]Tm, [200,−200

√
3]Tm. The

variance of noise are assumed to be identical, i.e., σ2
i =

σ2, δ2i = δ2, i = 1, 2, . . . ,M . In the following simulations, we

set η1 = 10−7, η2 = 10−6, η3 = 10−5, η4 = 10−4, η5 = 10−3

for the computation of (14) and (24).
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Fig. 1. RMSE vs. σ, u = [100,−52]Tm.
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Fig. 2. RMSE vs. σ, u = [600, 594]Tm.

In Fig. 1, we test the performance of the Proposed-1 and

Proposed-2 algorithms to the varying of σ when the source

position is located at u = [100,−52]Tm which is inside the

receiver moving trajectory. From Fig. 1, it can be seen that the

Proposed-2 algorithm is superior to the Proposed-1 algorithm,

which is according with the study in Section III. And the

Proposed-2 algorithm can reach the CRLB.

In Fig. 2, the source position is located outside the receiver

moving trajectory, i.e., u = [600, 594]Tm. From the figure, it

can be seen that the Proposed-2 algorithm is also superior to

the Proposed-1 algorithm, and Proposed-2 algorithm is very

close to the CRLB.
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Fig. 3. RMSE vs. σ, u is uniformly and randomly chosen inside a circle
region: ‖u‖ ≤ 1000m.
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Fig. 4. RMSE vs. δ when σ = 1m, u is uniformly and randomly chosen
inside a circle region: ‖u‖ ≤ 1000m.

In Fig. 3, the source position is uniformly and randomly

chosen inside a circle region. From Fig. 3, it can be seen that

the location estimation performance of the Proposed-2 is also

superior to Proposed-1.

In Fig. 4, we test the performance of the Proposed-3 and

Proposed-4 algorithms when consider the receiver position

errors. The source position is uniformly and randomly chosen

inside a circle region. From Fig. 4, it can be seen that the

Proposed-4 algorithm is superior to the Proposed-3 algorithm,

and is close to the CRLB.

VI. CONCLUSIONS

We present a single moving receiver location model based

on TOA measurement in this paper. First, we give the measure-

ments model and deduce the CRLB. Second, we use the SDP

technique to relax the nonconvex MLE problem into convex

problem, and obtain the original SDP localization algorithm.

More importantly, we jointly use the the SOC constraints

and penalty term to improve the tightness of the original

SDP algorithm. Besides, we also consider the presence of

receiver position errors, and we develop the robust localization

algorithm for position errors. Finally, from the simulation

results, it is shown that the modified SDP algorithms are

superior to the original SDP algorithms both for accurate and

non-accurate receiver position.
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