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Abstract—In multi-channel detection, sufficient statistics for
Generalized Likelihood Ratio and Bayesian tests are often
functions of the eigenvalues of the Gram matrix formed from
data vectors collected at the sensors. When the null hypothesis
is that the channels contain only independent complex white
Gaussian noise, the distributions of these statistics arise from
the joint distribution of the eigenvalues of a complex Wishart
matrix G. This paper considers the particular case of the largest
eigenvalue λ1 of G, which arises in passive radar detection of
a rank-one signal. Although the distribution of λ1 is known
analytically, calculating its values numerically has been observed
to present formidable difficulties. This is particularly true when
the dimension of the data vectors is large, as is common in
passive radar applications, making computation of accurate
detection thresholds intractable. This paper presents results that
significantly advance the state of the art for this problem.

Index Terms—Wishart matrix, Multi-channel detection, Pas-
sive radar, CFAR thresholds

I. INTRODUCTION

Complex Wishart matrices are well-studied in the statistical
literature (e.g., [1]–[3]), and they arise naturally in multi-
sensor statistical signal processing applications where the
received data are modeled as complex normal vectors [4]–
[9] and in MIMO communications (e.g., [10]–[13]). In such
applications, statistics used for signal detection and charac-
terization (e.g., rank estimation) are often functions of the
eigenvalues of the Gram matrix formed from the data vectors,
which is a complex Wishart matrix under typical assumptions.
Of particular recent interest is the problem of detection in
multistatic passive radar. In this application, the presence of a
common signal on several noisy channels of sensor data is to
be ascertained, but the signal of interest is not known. Often
one or more “reference channels” are available which are
known to contain the signal, but this need not be the case; i.e.,
all channels may be “surveillance channels” which may or may
not contain the signal. This latter scenario is discussed in [14],
[15], and it is the primary motivation for the work presented
in this paper. The results apply to a broader class of detection
and estimation problems, including situations involving one
reference channel owing to invariance properties of the joint
distribution of the eigenvalues of the Gram matrix [16], [17].

In [6], the largest eigenvalue λ1 of the M × M Gram
matrix formed from the complex sensor data is shown to
be a sufficient statistic for the Generalized Likelihood Ratio
Test (GLRT) for a rank-one signal in M channels of ad-
ditive complex zero-mean white Gaussian noise (ZMWGN).

It is noted in [18] that under the null hypothesis where no
signal component is present and the data are independent
complex ZMWGN vectors, λ1 follows the distribution of the
largest eigenvalue of a M × M complex Wishart matrix.
It is emphasized in [15] that, although this distribution is
known, it is not straightforward to compute – especially when
the dimension N of the data vectors is large. In typical
passive radar scenarios, the number of receive antennas is
usually small and long integration times are demanded by
the very low signal-to-noise ratios commonly involved when
collecting scattered signals from opportunistic sources. Thus
setting thresholds that correspond to desirably low false-alarm
probabilities in passive radar entails calculating the value of
the cumulative distribution function (CDF) of λ1 for small
values of M large values of N . The Tracy-Widom distribution
[19], [20], which is asymptotic in both N and M , has been
observed to yield inaccurate detection thresholds when used to
approximate the CDF of λ1 in this regime. Despite progress
reported in [15], the methods given there are feasible only up
to N ≈ 4 × 104 for problems with more than three sensors
whereas practical applications often involve values of N on
the order of 105 − 106 or larger.

This paper introduces an approach for computing the distri-
bution of λ1 that is effective for practical ranges of parameters
found in passive radar applications. Section II summarizes
briefly the physical model of the passive radar scenario
that is the primary motivation for this work and gives the
corresponding data model. In section III, detection in this
scenario is discussed and role of λ1 as a detection statistic
is explained. This section also presents known expressions
for the null distribution of λ1 in terms of gamma functions
and gives an overview of the numerical issues with this direct
implementation of the expressions. The current state of the
art in mitigating these issues, as presented in [15], is also
summarized. In section VI, the relationship between Laguerre
and Hermite polynomials is discussed and an equivalent
set of polynomials orthogonal over the region of interest
is constructed via change of variables. This mathematical
machinery is used in section VII to construct expressions
for the elements of the distribution matrix in terms of inner
products of orthogonal polynomials. The expressions given
will not overwhelm floating point representations, and the
integrals can be computed using numerical quadrature.
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II. SIGNAL MODEL

This paper considers the passive radar scenario described
in [15]. The positions of the transmitter and M receivers
are assumed known and the presence or absence of a target
with a given isolated state (position and velocity) is to be
deduced from the sensor data. As in [15], it is assumed that the
transmitted signal only manifests in the data through scattering
off the target; i.e., no direct-path signal appears in the sensor
data, and there is no clutter. In practice, this situation would
occur if physical obstacles prevent direct-path propagation of
the transmitted signal to the receivers. Although motivated by
this scenario, the results presented below are more broadly
applicable in multi-channel detection.

In addition to a scalar gain and additive Gaussian noise, each
channel imparts time delay and Doppler to the transmitted
signal in accordance with the putative target state and the
corresponding sensor position. Delay and Doppler are com-
pensated at each receiver to obtain M complex data vectors,
each of length N , which are tested for common signal content.

Under the null hypothesis H0 that the received data contain
only noise, these vectors x̃m, m = 1, . . . ,M are given by

H0 : x̃m = ξm

where the ξm are independent N -vectors of zero-mean com-
plex Gaussian noise. Under the alternative hypothesis,

H1 : x̃m = µms+ ξm

where µm is a complex channel gain and s is a complex N -
vector representing the common signal component across all
M channels.

III. NUMERICAL ISSUES

Considering H0, suppose X is an M × N matrix with
independent identically distributed complex normal entries
having mean zero and unit variance; i.e., xij ∼ CN (0, 1).
The Gram matrix G = XX† generated from this data has
a central complex Wishart distribution G ∼ CW(N, IM ). As
noted above, the GLRT for detection of a rank-one signal in
this setting is based on the largest eigenvalue λ1 of this Gram
matrix, and hence establishing thresholds for constant false-
alarm rate detection requires explicit evaluation of the CDF of
this eigenvalue. The CDF of λ1, as given in [10], is

FN (x) = P (λ1 ≤ x) =
|γ(N + i+ j, x)|i,j=0,...,M−1

|Γ(N + i+ j)|i,j=0,...,M−1
(1)

where γ(a, x) =
∫ x
0
ta−1e−tdt is the lower incomplete gamma

function.
The form of the CDF FN presented in equation (1) strongly

constrains the problem size for which explicit calculations are
possible using floating point arithmetic. Direct computation
using a naive implementation of this expression, while exact
in principle, is severely limited by the maximum number of
samples possible before overflowing double precision floating
point (see Table I).

TABLE I
COMPUTATIONAL LIMITS OF EXPRESSION FROM [10] IN DOUBLE

PRECISION FLOATING POINT ARITHMETIC

Sensors (M ) Maximum Samples (N )
2 98
3 71
4 57
5 47

Realistic problems for passive radar applications require
numbers of samples N on the order of 105 − 106, generally
with a single-digit number of receivers. The current best
implementation, given in [15], allows for computation in
problems of this size only for two or three receivers (see Table
II).

TABLE II
COMPUTATIONAL LIMITS OF EXPRESSION FROM [15] IN DOUBLE

PRECISION FLOATING POINT ARITHMETIC

Sensors (M ) Maximum Samples (N )
2 4.8× 108

3 2.6× 105

4 4.5× 103

5 5.5× 102

IV. LAGUERRE POLYNOMIAL EXPANSION

This section introduces an approach to mitigate the issues
noted in the preceding section. Beginning with equation (1),
the CDF of λ1 may be expanded using the generalized
Laguerre polynomials. First, let A be the lower triangular
matrix of coefficients of the normalized generalized Laguerre
polynomials with coefficient a = N−1 [21, ch. 22]. Note that
these polynomials are orthonormal with respect to the measure
tae−tdt. Begin by pre- and post-multiplying the matrices in
(1) by A:

FN (x) =
|γ(N + i+ j, x)|i,j=0,...,M−1

|Γ(N + i+ j)|i,j=0,...,M−1

=

∣∣A [∫ x
0
titjtae−tdt

]
AT
∣∣∣∣A [∫∞

0
titjtae−tdt

]
AT
∣∣

=

∣∣∣√ i!j!
(a+i)!(a+j)!

∫ x
0
L
(a)
i (t)L

(a)
j (t)tae−tdt

∣∣∣∣∣∣√ i!j!
(a+i)!(a+j)!

∫∞
0
L
(a)
i (t)L

(a)
j (t)tae−tdt

∣∣∣ .
The denominator evaluates to δij from the definition of the
generalized Laguerre polynomials [21]. Thus, FN (x) = |Ψ(a)|
where the elements of the matrix Ψ(a) are given by

Ψ
(a)
ij =

√
i!j!

(a+ i)!(a+ j)!

∫ x

0

L
(a)
i (t)L

(a)
j (t)tae−tdt.
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The change of variable t→ a+ x
√

2a yields

Ψ
(a)
ij (a+ x

√
2a) =

√
i!j!

(a+ i)!(a+ j)!
×∫ x

−
√

a
2

L
(a)
i (a+ t

√
2a)L

(a)
j (a+ t

√
2a)(a+ t

√
2a)ae−(a+t

√
2a)dt

=
√

2aaae−a

√
i!j!

(a+ i)!(a+ j)!
×∫ x

−
√

a
2

L
(a)
i (a+ t

√
2a)L

(a)
j (a+ t

√
2a)(1 + t

√
2/a)ae−t

√
2adt.

(2)

V. REMARKS ON COMPUTING THE MATRIX ELEMENTS

Note that the expression FN (x) = |Φ(a)| is exact, but
computing the matrix elements Φ

(a)
ij still presents difficulties.

In particular, the factor multiplying the integral in equation
(2) contains factorials of the number of samples. This section
develops a numerically tractable approximation for (2) that
becomes arbitrarily accurate as more terms of a convergent
series are used.

Applying Stirling’s approximation yields

√
2aaae−a

√
i!j!

(a+ i)!(a+ j)!

=

√
2aaae−a

a!ai/2aj/2
√

Πi
k=1(1 + k/a)Πj

k=1(1 + k/a)

=
1√
π
a−i/2a−j/2

e−ε(a)√
Πi
k=1(1 + k/a)Πj

k=1(1 + k/a)

where the function ε is defined by

ε(a) = log a!− a log a+ a− 1

2
log 2πa

=
1

12a
− 1

360a3
+

1

1260a5
− 1

1680a7
+ . . . .

Denote

cij(a) =
e−ε(a)√

Πi
k=1(1 + k/a)Πj

k=1(1 + k/a)

and observe that lima→∞ cij(a) = 1. Next, define

φa(t) = a log(1 + t
√

2/a)− t
√

2a.

For |t| <
√
a/2, this can be expanded in a Taylor series as

φa(t) = −t2 −
∞∑
j=3

(−1)j

j
(t
√

2/a)j .

Finally, substituting cij and φa into the integral in (2) produces

Ψ
(a)
ij (a+

√
2ax) = cij(a)

√
i!j!√
π
×∫ x

−
√
a/2

a−i/2L
(a)
i (a+ t

√
2a)a−j/2L

(a)
j (a+ t

√
2a)eφa(t)dt.

(3)

VI. ASYMPTOTICS OF GENERALIZED LAGUERRE
POLYNOMIALS

Consider the relation between the generalized Laguerre and
Hermite polynomials shown in [22]:

lim
a→∞

a−n/2L(a)
n (a+ t

√
a) =

(−1)n

n!
2−n/2Hn(t/

√
2).

Define polynomials

D(a)
n (t) = (−1)nn!(2/a)n/2L(a)

n (a+ t
√

2a).

As a consequence of the Laguerre recurrence relation

L
(a)
n+1(x) =

(2n+ 1 + a− x)

n+ 1
L(a)
n (x)− (n+ a)

n+ 1
L
(a)
n−1(x),

the polynomials D(a)
n satisfy the recurrence relation

D
(a)
n+1(x) =

(
2x− (2n+ 1)

√
2/a
)
D(a)
n (x)

−
(
2n+ n2(2/a)

)
D

(a)
n−1(x)

D
(a)
0 (x) = 1 D

(a)
1 (x) = 2x−

√
2/a.

Taking the limit a → ∞, this recurrence relation is the same
as that satisfied by the Hermite polynomials, with the same
initial conditions. Therefore

lim
a→∞

D(a)
n = Hn. (4)

These polynomials are orthogonal on the interval [−
√
a/2,∞)

with respect to the measure eφa(t)dt; i.e.,∫ ∞
−
√
a/2

D(a)
n (t)D(a)

m (t)eφa(t)dt =

√
π2nn!

cnn(a)
δnm.

VII. THE DISTRIBUTION

In order to write FN in a form that can be computed using
floating point arithmetic for practical problem sizes, the results
on orthogonal polynomials in Section VI are combined with
the integral forms shown in Sections IV and V.

A. Hermite
As a → ∞ in equation (4), D(a)

n → Hn. Therefore, the
distribution of λ1 can be written in terms of the Hermite
polynomials as

Fa+1(a+
√

2ax) =

∣∣∣∣∣ 1√
π2i+ji!j!

∫ x

−∞
Hi(t)Hj(t)e

−t2dt

∣∣∣∣∣ .
(5)

With some additional recurrence relations, the elements of
this matrix can be computed without computing any integrals.
First, consider that d(Hj(t)e

−t2) = −Hj+1(t)e−t
2

. For the
zeroth row of the matrix, the inner product takes the form∫ x

−∞
Hi(t)Hj(t)e

−t2dt =

{ √
π(1 + erf(x))/2 if j = 0

−Hj−1(x)e−x
2

otherwise.

Subsequent elements of the matrix can be recursively calcu-
lated using the relation∫ x

−∞
Hi(t)Hj(t)e

−t2dt = −Hi(x)Hj−1(x)e−x
2

+2i

∫ x

−∞
Hi−1(t)Hj−1e

−t2dt.
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The formulation of the distribution shown in equation (5)
eliminates the large gamma functions with number of degrees
of freedom (samples), thus eliminating the main cause of the
severe floating point overflow.

B. D Polynomials
Substituting the D polynomials defined in Section VI into

the integral form of the matrix elements shown in (3) gives
the matrix elements in terms of partial inner products of the
D polynomials:

Ψ
(a)
ij (a+

√
2ax) =

cij(a)√
π2i+ji!j!

×
∫ x

−
√
a/2

D
(a)
i (t)D

(a)
j (t)eφa(t)dt.

The distribution can now be computed by taking the deter-
minant of this matrix:

Fa+1(a+
√

2ax) =

∣∣∣∣∣ cij(a)√
π2i+ji!j!

∫ x

−
√
a/2

Di(t)Dj(t)e
φa(t)dt

∣∣∣∣∣ .
(6)

As seen in the previous subsection, the only factorial or
gamma function terms have arguments in terms of the number
of receiver channels, which for passive radar applications is
generally a single-digit number, resulting in a leading term
easily managed by floating point representations.

VIII. NUMERICAL RESULTS

This section describes the results of numerical computations
of the CDF for λ1 for H0 using three methods. Direct Monte
Carlo simulations of complex Wishart matrices will be used as
a baseline, and will be compared to the methods constructed
in the preceding sections of this paper, shown in equations (5)
and (6).

A. Complementary CDF Comparison
Shown here are figures demonstrating the complementary

CDF with M = 2 sensors and N = 104, the approximate
limit of the method demonstrated in [15], as well as for M = 5
and N = 106, demonstrating the viability of the new methods
to practical passive radar problems. Monte Carlo simulations
with one million trials at each point were performed.

The new methods agree with Monte Carlo simulation up to
the number of trials; larger experiments would be too com-
putationally time intensive. In addition, note the convergence
of tail probabilities for larger values of N in the curves for
equation (5).

B. Floating Point Limits
Similar to Section III, empirical testing was performed to

find general limits for the number of degrees of freedom before
equation (6) overwhelms double precision floating point. In
tested cases with large numbers of samples, limits to the
number of bins in built in numerical integration algorithms
begin to cause accuracy issues when the number of samples
exceeds numbers on the order of 109. Taking more care with
the choice of integration algorithm and parameters would
likely allow this threshold to be exceeded.

Fig. 1. Complementary CDF comparison from equations (5), (6) for M = 2
and N = 104.

Fig. 2. Complementary CDF comparison from equations (5), (6) for M = 5
and N = 106.

IX. CONCLUSION

In this paper, new methods for computing the distribution
of the largest eigenvalue of a complex Wishart matrix were
introduced and demonstrated. This work was motivated by
the desire to calculate detection thresholds for problems in
passive radar detection, where the GLRT for a rank-one signal
in white Gaussian noise is the largest eigenvalue of the Gram
matrix constructed from the receiver data. Previously pub-
lished methods for calculating this distribution will overflow
double precision arithmetic for the problem sizes encountered
in passive radar due to formulations in terms of ratios of
gamma functions. The methods outlined here are derived using
relations of the gamma functions to the Laguerre polynomials
to eliminate this overflow. Experimental comparisons between
the new and old methods as well as Monte Carlo simulations
were performed. Future work will focus on generalizing these
methods to signals of higher rank, as well as calculating
theoretical error bounds.
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