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ABSTRACT

This paper proposes two high-resolution Direction-of-Arrival (DOA)
estimators using coprime sensor arrays (CSA) processing broad-
band signals. The product processor estimates the broadband spatial
power spectral density (PSD) by averaging narrowband spatial PSD
estimates. These narrowband PSD estimates are formed by mul-
tiplying one CSA subarray scanned response with the complex
conjugate of the other. Contrastingly, the min processor estimates
the broadband spatial PSD by taking the minimum over all subarray
periodograms at all processed frequencies for each bearing. The
inverse Fourier transform of the broadband spatial PSD estimates
the spatial correlation function, which populates the diagonals of
a Toeplitz augmented covariance matrix (ACM). The MUSIC al-
gorithm estimates the source DOAs from this constructed ACM.
Combining the CSA narrowband PSD estimates over additional
bandwidth reduces the number of snapshots needed to attenuate
cross-terms in the spatial PSD estimates, providing processing gains
for DOA estimation. The MUSIC pseudo-spectra suggest that the
product algorithm performs better in scenarios with more sources
than sensors and the min algorithm performs better in scenarios with
varying source power levels. Monte Carlo simulations show that
the new DOA estimators achieve improved precision over previous
broadband CSA DOA estimators in snapshot-challenged scenarios.

Index Terms— Coprime arrays, multi-frequency, product pro-
cessing, min processing, DOA estimation

1. INTRODUCTION

Direction-of-Arrival (DOA) estimation is a major application of co-
prime sensor arrays (CSA) in radar, sonar and communication sys-
tems [1, 2, 3, 4]. There are in general two approaches to process
the CSA data. The first approach directly estimates the second-order
statistics of the propagating field from the array data and is termed
spatial correlation processing in this paper. For a CSA with O(N)
sensors, applying spatial smoothing MUSIC on the correlation esti-
mates is able to identify up to O(N2) closely-spaced uncorrelated
sources given sufficient data snapshots [5]. Alternatively, a prod-
uct processor applies conventional beamforming (CBF) separately
on the CSA subarray data and then multiplies one subarray scanned
response with the complex conjugate of the other [1]. This CSA
product processor resolves the aliasing in the spatial power spectral
density (PSD) estimates and achieves the resolution of the fully pop-
ulated ULA spanning a comparable aperture [4].

Spatial correlation processing and product processing are im-
plicitly related. The correlation processing estimates the spatial cor-
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relation lags from pairs of sensors with appropriate spacings, which
is equivalent to cross-correlating the ‘zero-filled’ subarrays data fol-
lowed by appropriate windowing and normalization [6]. The correla-
tion processing algorithm is an extension of Pillai et al.’s augmented
covariance matrix (ACM) DOA estimation algorithm [7, 8] to in-
clude two co-linear subarrays, as opposed to one single minimum
redundancy array. Subarray cross-correlation in the spatial domain
is equivalent to multiplying one subarray scanned response with the
complex conjugate of the other in the spatial frequency domain.
Therefore, the statistical properties of the product spectrum implic-
itly impact the high-resolution DOA estimators using the ACM con-
structed from the co-array correlation estimates. Issues created by
the non-positive semi-definite spectrum occur with pairwise correla-
tion estimates before any of the spatial smoothing steps as proposed
in [2, 5]. As a result, the ACM constructed from the co-array corre-
lation estimates is not guaranteed positive semi-definite [7, 8]. The
variance of the CSA product periodogram is higher than the vari-
ance of the fully populated ULA periodogram spanning a compa-
rable aperture [6]. This explains the reduced precision in the DOA
estimates for multiple sources using the correlations estimated from
the CSA rather than the fully populated ULA [3, 5]. The CSA prod-
uct periodogram requires a large number of snapshots to statistically
average out the cross-terms in presence of multiple sources [1, 4, 9].
Consequently, many proposed high-resolution DOA estimators us-
ing nested arrays and CSAs either explore the ensemble behavior or
focus on asymptotic performance for relatively high SNR and large
numbers of snapshots [1, 2, 3, 5, 10, 11]. These assumptions ensure
less biased and more precise estimates of the second-order statistics
of the propagating field from the array data. However, both the noise
level and the number of snapshots assumed in those papers are unre-
alistically optimistic for many acoustic environments, largely due to
the speed of acoustical field propagation, use of large array apertures
and the field being non-stationary [12, 13].

We propose new broadband CSA processing algorithms that de-
tect and estimate the DOAs of more sources than sensors with im-
proved precision in low SNR and snapshot-challenged scenarios.
The proposed algorithms exploit the duality between CSA narrow-
band beamforming and undersampled ULA broadband beamform-
ing in spatial PSD estimation. The CSA narrowband beamformer
exploits the beam responses obtained through the spatial sampling
diversity across multiple subarrays to attenuate grating lobes while
processing a single narrowband frequency. The ULA broadband
beamformer exploits the beam responses obtained through the fre-
quency diversity across the signal bandwidth to attenuate grating
lobes while processing a single spatially undersampled array [14].
Combining both sampling and frequency diversity results in process-
ing gains for high-resolution DOA estimation over the performance
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Subarray A: M+1 elements

N /2

Subarray B: N+1 elements

M /2

CSA: (M + N - 1)+1 elements

Fig. 1. Extended center-symmetric coprime sensor array geometry
for (M,N) = (4, 5) and extension factor α = 2. The CSA inter-
leaves two subarrays A and B, which have the same aperture and
share α+ 1 sensors. CSA has α(M +N − 1) + 1 sensors in total.
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Fig. 2. Cross-correlation difference co-array weights of the CSA
geometry in Fig. 1 with (M,N) = (4, 5) and α = 2. The co-
array spans k ∈ [−40, 40], with missing lags (holes) occurring at
±29,±33,±34,±37,±38,±39.

achieved by either beamformer acting alone.
This paper assumes that the underlying propagating field is

stochastically wide-sense stationary, the sources are uncorrelated,
and the signal observation time is long enough that the data snap-
shots at distinct frequencies are uncorrelated. Although both al-
gorithms assume relatively broadband signals, the proposed DOA
estimators differ from the broadband CSA DOA estimator proposed
in [3] in two ways. First, Ref. [3] assumes the source spectra at dif-
ferent frequencies are proportional, and violating this requirement
leads to larger DOA estimation errors using the algorithm in [15]. In
contrast, the source spectra in this paper are not assumed to be pro-
portional, but only assumed to occupy sufficiently wide frequency
bandwidth (typically within ±10% around the nominal frequency)
with meaningful power at each frequency. Second, Ref. [3] enlists
the array data for a small set of sensor pairs at a set of additional
temporal frequencies to estimate the spatial correlations at the miss-
ing co-array lags (holes) to construct a larger covariance matrix for
localizing more sources. In contrast, this paper processes the data at
these same frequencies to estimate a full spatial PSD, thus implic-
itly estimating the correlation function for all lags at all processed
frequencies, not just a small subset.

2. COPRIME SENSOR ARRAYS AND CO-ARRAYS

A CSA interleaves two spatially undersampled ULAs, referred to as
subarrays, with coprime undersampling factorsM andN sharing no
common divisor greater than 1 (Fig. 1). In this paper, the coprime
factors satisfy N = M + 1, which minimizes the sensors required
to span a given array aperture [4]. Subarray A has αM + 1 sensors

with intersensor spacing Nλ/2 and subarray B has αN + 1 sensors
with intersensor spacingMλ/2, where λ is the wavelength of the in-
coming plane wave at the nominal frequency f0. The array aperture
extension factor α is assumed an integer for simplicity. The two sub-
arrays are aligned at both ends and center symmetric and therefore
share α+1 sensors. As a result, the CSA has α(M+N−1)+1 to-
tal sensors spanning an aperture of αMNλ/2. High-resolution line
spectral estimation makes use of the second-order statistics of the
underlying field such as acoustic or electromagnetic waves. Spatial
correlation processing the sparse arrays data offers more than twice
the number of degrees-of-freedom (DOFs), or distinct difference co-
array lags, as the physical sensors, and thereby can localize more
sources than sensors [5, 7, 8]. Fig. 2 shows the cross-correlation dif-
ference co-array weights for the CSA geometry in Fig. 1. The weight
value indicates the number of sensor pairs corresponding to the same
co-array lag. The co-array spans lags from ±αM(M + 1), with its
weights symmetric about the co-array center. There are M(M − 1)
missing correlation lags (holes) in the full co-array span and the
hole-free region spans ± ((α− 1)M(M + 1) + 2M).

3. DOA ESTIMATION USING MULTI-FREQUENCY CSA
PRODUCT AND MIN PROCESSORS

Combining the CSA narrowband PSD estimates over additional
bandwidth reduces the number of snapshots needed to attenuate
the cross-terms in the spatial PSD estimates, providing processing
gains for high-resolution DOA estimation. This paper uses direc-
tional cosine u = cos(θ) to indicate the source directions, where
θ ∈ [0o, 180o] is the DOA with respect to the array axis. Fig. 3 illus-
trates the proposed data processing procedures using the CSAproduct

or CSAmin processors when the sources are broadband in temporal
frequency. The DOA estimators contain two major steps: broadband
spatial PSD estimation (Figs. 3a-b) and Toeplitz ACM construction
for spectral MUSIC (Fig. 3c). The two broadband spatial PSD es-
timators in step 1 differ in the way they combine the narrowband
spatial PSD estimates by averaging across frequencies (Fig. 3a)
or using the min processor (Fig. 3b). At each temporal frequency
fl, l = 1, ..., L for narrowband spatial PSD estimation, the CSA
subarrays are separately conventionally beamformed to produce two
spatial scanned responses ya,l(u) and yb,l(u) for the narrowband
snapshot data corresponding to fl. Each subarray scanned response
contains grating lobes due to the spatial undersampling. For a single
source, multiplying one subarray output with the complex conjugate
of the other at each bearing resolves the aliasing ambiguities. In the
presence of multiple sources, the cross-power spectra have multiple
cross-terms, which typically require averaging large number of snap-
shots to be attenuated [1, 4, 9]. However, in broadband processing,
only the true source DOA peaks are fixed across frequencies, while
the cross-terms change locations in u as the frequency changes. As
a result of averaging across frequencies [14]

tcp(u) =
1

L

L∑
l=1

∣∣ya,l(u)y∗b,l(u)
∣∣ , (1)

the peaks at the true source DOAs are constructively reinforced,
while the cross-terms are relatively attenuated.

Liu and Buck [16] proposed the min processor to guarantee a
positive semi-definite spatial PSD estimate for the narrowband CSA
data. At each temporal frequency, the min processor chooses the
minimum between the two subarray periodograms at each bearing
to resolve the subarray aliasing ambiguities (Fig. 3b). The min pro-
cessor mitigates the destructive interference of weaker sources by
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Fig. 3. Block diagrams for broadband coprime array PSD estimates
using the product processor (a) and min processor (b). The broad-
band spatial PSD estimates from either CSAproduct or CSAmin are
used for high-resolution DOA estimation using spectral MUSIC (c).

the negative sidelobes of strong sources in the CSA product spectra.
In the presence of multiple sources, the min spectra may also have
cross-terms, which will persist with snapshot averaging. Again, in
broadband processing, the true source DOA peaks are fixed across
frequencies while the cross-terms change locations in u as the fre-
quency changes. Taking the minimum of the spatial spectra esti-
mated across all frequencies at each bearing

tcm(u) = min
l

(
min
a,b

(
|ya,l(u)|2, |yb,l(u)|2

))
, (2)

the peaks at the true source DOAs are well preserved, while the
cross-terms are relatively attenuated.

Given the broadband spatial PSD estimates, the second step of
the DOA estimators involves the ACM construction and spectral
MUSIC. The inverse Fourier transform of the PSD estimates from
the product processor tcp(u) or the min processor tcm(u) provides
estimates of the spatial correlation function r̂corr(k). We apply win-
dowing to r̂corr(k) to extract the region corresponding to the span of
the difference co-array. The estimated correlation function r̂corr(k)
is then normalized by the corresponding co-array weights to correct
for the bias due to redundancies at certain lags. The correlation esti-
mates at the missing co-array lag positions are implicitly interpolated
by the inverse Fourier transform. This approach allows us to exploit
all the DOFs in the co-array span. The normalized correlation es-
timates populate the diagonals of a Hermitian Toeplitz ACM. The
MUSIC algorithm then processes the constructed ACM to separate
the signal and noise subspaces for high-resolution pseudo-spectra
estimation [10, 17].

4. SIMULATION RESULTS

To compare the performance of the proposed multiple frequency
DOA estimation algorithms, we consider the CSA configuration in
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Fig. 4. Comparison of three multi-frequency algorithms’ MUSIC
pseudo-spectra on a dB scale against directional cosine u = cos θ
for multiple incoming sources of different powers: strong sources
with sensor level SNR = 0 dB are indicated by green lines and weak
sources with SNR = -10 dB are indicated by orange lines. The CSA
has 17 sensors in total and all simulations use 17 independent data
snapshots.

Fig. 1 with (M,N) = (4, 5) and α = 2. Subarray A consists of 9
sensors located at indices {1, 6, 11, 16, 21, 26, 31, 36, 41} and sub-
array B consists of 11 sensors located at indices {1, 5, 9, 13, 17, 21,
25, 29, 33, 37, 41}. The two subarrays share 3 sensors at locations
{1, 21, 41} and therefore the CSA has 17 sensors in total. The differ-
ence co-array spans k ∈ [−40, 40], among which the 57 lags within
k ∈ [−28, 28] are contiguous. There are 12 missing lags occurring
at k = ±29,±33,±34,±37,±38,±39. All simulation results pre-
sented below assume a priori knowledge of the correct number of
sources, consistent with previous literature on DOA estimation with
sparse arrays [1, 2, 3, 5, 10, 11].

Single frequency MUSIC based on either a spatially smoothed
covariance matrix [2, 5] or Toeplitz covariance matrix augmenta-
tion [8, 10] can only use the contiguous portion of the co-array es-
timates. Therefore, up to 28 uncorrelated sources can be localized
provided sufficient snapshots and relatively high SNR are available.
For the CSA geometry in Fig. 1, the multi-frequency algorithm in [3]
requires 6 additional frequencies to estimate the missing co-array
lags. Specifically, the additional frequencies and sensor pairs em-
ployed are f1 = (29/30)f0 and sensor pair {1, 31} to fill in co-array
hole k = ±29, f2 = (33/35)f0 and {1, 36} to fill in k = ±33,
f3 = (34/35)f0 and {1, 36} to fill in k = ±34, f4 = (37/40)f0
and {1, 41} to fill in k = ±37, f5 = (38/40)f0 and {1, 41} to fill
in k = ±38 and f6 = (39/40)f0 and {1, 41} to fill in k = ±39.
All of the additional frequencies fall within 8% of the nominal fre-
quency f0. With all co-array holes filled, spatially smoothed MUSIC
is able to localize up to 40 uncorrelated sources. To make a fair com-
parison with the multi-frequency CSA MUSIC algorithm in [3], the
multi-frequency CSAproduct and CSAmin based algorithms proposed
in this paper use exactly the same frequencies and range of co-array
lags within k ∈ [−40, 40] for high resolution DOA estimation.

The simulations compare the performance of three different
broadband DOA estimators: the hole-filling spatially smoothed al-
gorithm in [3], the proposed CSAproduct based algorithm in Fig. 3(a)
and the CSAmin based algorithm in Fig. 3(b). The first scenario sim-
ulates the performance of the DOA estimators for multiple sources
with varying power levels. The sources’ DOAs are designed with
7 strong sources (0 dB sensor SNR, green lines) uniformly spaced
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Fig. 5. Comparison of three multi-frequency algorithms’ MUSIC
pseudo-spectra on a dB scale for a scenario with more sources than
number of sensors. There are 31 uncorrelated sources arrives at the
array: 1 at broadside, 15 uniformly spaced in u ∈ (0, 0.97] and
another 15 uniformly spaced in θ ∈ (90o, 150o]. The sensor level
SNR for all sources is 0 dB. The CSA has 17 sensors in total and all
simulations use 34 independent data snapshots.

in u ∈ [−0.95, 0.95], interleaved with two weaker sources for
each strong source (-10 dB SNR, orange lines) offset in DOA by
∆u = ±0.42, the negative peak sidelobe locations at the nominal
frequency. The 4 weaker source locations that fall outside the visi-
ble range are not included, resulting in a total of 17 sources for the
17 element CSA. Fig. 4 compares the MUSIC pseudo-spectra for
this scenario with 17 independent data snapshots at each frequency.
Fig. 4(a) shows the spatial smoothing algorithm fails to detect all
weak sources and exhibits biases for certain DOAs. Fig. 4(b) shows
the CSAmin algorithm localizes all sources successfully even in this
SNR and snapshot-challenged scenario since its spatial spectra is
guaranteed positive semi-definite. Fig. 4(c) shows the CSAproduct

algorithm detects most sources correctly, but misses detecting the
peak at u = −0.42 because the negative sidelobes of the strong
source at broadside destructively mask the weak source for the
product spectra.

The second scenario compares the DOA estimators for the case
with more sources than sensors. There are 31 uncorrelated sources in
presence with the same sensor SNR of 0 dB: 1 at broadside, 15 uni-
formly spaced in u ∈ (0, 0.97] and another 15 uniformly spaced in
θ ∈ (90o, 150o]. Fig. 5 compares the MUSIC pseudo-spectra for the
three DOA estimators with 34 independent data snapshots at each
frequency. The orange dashed lines in all panels indicate the true
source DOAs. Fig. 5(a) shows the spatial smoothing algorithm fails
to detect multiple sources due to lack of snapshots. Fig. 5(b) shows
the CSAmin algorithm correctly locates most sources, but misses de-
tecting the peak at u = −0.79. Fig. 5(c) shows the CSAproduct al-
gorithm successfully locates all incoming sources, although the 6
left-most peaks are less distinguishable than others.

To compare the performance of different DOA estimators in
snapshot challenged scenarios, we evaluate the average root mean
square error (RMSE) of all estimated DOAs against the number
of snapshots per sensor. The error is calculated as RMSE =

(
∑D

d=1

∑Q
q=1(θ̂d(q) − θd)2/DQ)1/2, where θ̂d(q) is the esti-

mated angle of arrival for the d-th source in the q-th Monte Carlo
trial, D is the number of sources and Q is the number of Monte
Carlo trials. Fig. 6 compares the RMSEs averaged over 500 Monte
Carlo trials of the six algorithms for the same scenario as in Fig. 5.
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Fig. 6. Comparing the RMSE for the estimated angles of arrival of
six algorithms against number of snapshots per sensor averaged over
500 Monte Carlo trials. ‘sf’ and ‘mf’ indicates single and multiple
frequency algorithms respectively. Sensor level SNR is 0 dB for all
sources. The 31 sources are distributed as in Fig. 5.

Note how the RMSEs converge for all algorithms as the number
of snapshots per sensor increases. Specifically, the RMSEs for all
single frequency algorithms operating at the nominal frequency f0
decrease slowly and are all above 1.6 degrees. This is expected
since single frequency CSA MUSIC is able to localize at most 28
sources in this case and therefore struggles to estimate all source
DOAs. On the other hand, applying multiple frequencies expands
the applicable DOFs in the co-array, allowing estimation of more
source DOAs. The RMSEs of all three multi-frequency algorithms
are lower than their single frequency counterparts and also converge
faster as the number of snapshots per sensor increases. The proposed
multi-frequency CSAmin has lower RMSE than the multi-frequency
spatial smoothing algorithm for less than 3 snapshots per sensor.
The multi-frequency CSAproduct has much lower RMSE than the
multi-frequency spatial smoothing algorithm over the entire range
examined.

5. CONCLUSION

This paper proposes two high-resolution source DOA estimators by
applying the product and min processors on multi-frequency co-
prime sensor arrays. The spatial correlations implied from the PSD
estimates populate the diagonals of a Hermitian Toeplitz augmented
covariance matrix. Applying high resolution spectral MUSIC to
the constructed ACM localizes more spatially uncorrelated narrow-
band sources than the number of sensors. Simulations show that the
proposed multi-frequency algorithms improve high-resolution DOA
estimation for CSAs in low SNR and snapshot-challenged scenar-
ios. The multi-frequency CSAproduct DOA estimator improves the
estimation performances for more sources than sensors in snapshot-
challenged scenarios. The multi-frequency CSAmin DOA estimator
is able to identify relatively weak sources located in the negative
sidelobes of the strong sources since the PSD estimates are guaran-
teed positive semi-definite. Adding bandwidth for averaging greatly
reduces the amount of snapshots needed to reduce the cross-terms
in the product spectra estimates. A future research focus is a more
rigorous characterization of these improved DOA estimation perfor-
mance in less restrictive scenarios for both source powers and DOAs.
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