MULTIPLE WAVELENGTH SENSING ARRAY DESIGN

Gal Shulkind, Stefanie Jegelka* and Gregory W. Wornell'

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA, USA
{shulkind,stefje,gww } @mit.edu

ABSTRACT

We design finite antenna arrays for far-field sensing at multiple
wavelengths, under two design paradigms. The first design paradigm
is optimized for collection of measurements at multiple wavelengths,
fusing these together for joint inference over an underlying scene.
The second design paradigm is robust, in a sense that it is guaranteed
to allow good inference over the scene at any one single wavelength
at a time. We quantify inference quality via the D-Bayes optimality
criterion and limit the design space by restricting the number of
allowed sensors and the positions where these can be placed.

We show that the resulting combinatorial optimization problems
are instances of problems in a class known to have efficient guar-
anteed approximation algorithms, namely submodular optimization
problems, and showcase the design of arrays under both paradigms
utilizing simple greedy selection algorithms, and state-of-the-art
robust submodular maximization algorithms.

Index Terms— Multiple Wavelength, Far Field, Array Design,
Submodular Optimization, Robust Optimization

1. INTRODUCTION

Sensor arrays for spatial sensing are deployed in a wide range of
applications including radar, sonar, medical imaging and radio as-
tronomy and there is a vast literature on the topics of array design
and array processing from the last century [1, 2]. In this paper we
focus on designing sensor arrays for multiple wavelength sensing
applications. Arrays operating at multiple wavelengths have been
studied in various contexts such as wideband direction of arrival
estimation problems [3, 4], multi-frequency synthesis in Astronomy
[5], and designing wideband array patterns [6].

A major goal in designing arrays is efficiently meeting required
specifications with a limited budget of sensing elements, which are
often a main determinant of system cost. However, even in the sin-
gle wavelength case, the design of array geometries is a notoriously
hard task, and many applications simply utilize a uniform truncated
half-wavelength design, or restrictions thereof. Indeed, the problem
of designing non-uniform arrays hints at combinatorial optimization
and is computationally hard as we discuss later.

Various studies tackle the problem of non-unifom array design di-
rectly. In beamforming arrays methods like array thinning [7] have
been put to the test. Other approaches consider methods such as
swarm optimization [8], dynamic programming [9], genetic algo-
rithms [10], inversion [11] and Bayesian compressive sampling [12].
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In applications of estimating direction of arrival, other specialized
techniques have emerged for finding efficient array designs such as
optimizing corresponding error bounds [13], or designing nested
topologies [14].

In this paper we study the related problem of inference on a scene of
interest via measurements collected at a sensor array. The approach
we take for designing array geometries is novel in that we consider
settings where some prior on the scene is available and propose
adapting the geometry accordingly to achieve efficient inference
exploiting this belief. In this Bayesian setting, sensing the scene is
just performing inference in the model, and the problem of array
geometry design asks to select a geometry that optimizes the quality
of inference.

We quantify the quality of inference through the D-Bayes optimality
criterion [15, 16] and consider two design paradigms. The first
design paradigm is optimized for collection of measurements at
multiple wavelengths, fusing these together for joint inference over
an underlying scene. The second design paradigm is robust, in a
sense that it is guaranteed to allow good inference over the scene at
any one single wavelength at a time.

We show that the resulting combinatorial optimization problems
possess the property of submodularity [17]. Recently, there has been
significant progress on the theory of optimizing submodular func-
tions [18, 19, 20, 21, 22]. In particular, these results state that, while
in general NP-hard, these problems admit variants of greedy algo-
rithms that are guaranteed to achieve near-optimal solutions, i.e.,
within a constant factor. Our connections and formulations open
avenues for leveraging those results for efficient array design with
strong guarantees. We demonstrate this by showcasing the design
of array geometries under both paradigms in settings with arbitrary
apertures. Together with our new formulations, the exploitation of
prior knowledge leads to higher quality inference at lower cost in
terms of the number of sensing elements.

2. PROBLEM FORMULATION

In this section we formulate the multiple wavelength array design
problem for far field sensing applications, and frame sensing as
Bayesian inference. To simplify the exposition, we focus on the
one-dimensional case.

2.1. Far-Field Sensing

The far field sensing setup is depicted in Fig. 1. A scene of in-
terest is located far from an observation axis z. The scene is
characterized through an illumination function 3(6), with [9|<%
the angle between the direction of observation and the broadside.
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We are to place () sensors along the observation axis at positions
S={zo,...,20-1}, and collect measurements at wavelengths
A={Xo,...,Ar—1}. We aim to choose an optimal set S satisfying
some constraints. We take A to be a finite selection set of possible
positions (e.g. a finite grid on some section of the real line), and
pose the constraint S C A.

The noiseless reading r(z4; A;) taken at position =z, and wave-
length A=), is given according to [1]:
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where =29 such that |¢|<3, B(¢))=p(sin""(24)), and we
assume that the illumination function is wavelength-invariant such
that the scene appears identical when probed at different wave-
lengths A. Finally, we consider the effect of noise by introducing

Fig. 1: Far-field sensing with sensing elements depicted as points.

F=[fo,-.., fn_1]T. a vector of N=QL noisy measurements mod-
eled according to:

1 _ ) qg=0,...,Q —1
fori=r(zq; M) twgrqu =0, L1 2)
where w, is additive noise. Stacked in w=[wp, ..., wN_l]T, we
assume throughout that the noise is complex, circular, Gaussian w ~
CN(0,3w) [23], i.i.d. across measurements, i.e., Xy = o2 Iy,
where Iy is an N x N identity matrix.

2.2. The Sensing Setup

The sensing problem we consider in this paper entails the estima-
tion of the illumination function 8(1) from the set of noisy mea-
surements f Even in the noiseless setting this problem is gravely
ill-posed as infinitely many wildly varying scenes map to any given
finite set of observations'.

To cope with this ill-posedness, some prior belief must hence be
incorporated into the model. In what follows, we take a Bayesian
approach and impose a prior on the scene 3(1)). Subsequently, sens-
ing is equivalent to performing inference in this model. The prior
may be assigned based on past observations over scenes or based on
a-priori knowledge of scene properties as we discuss next.

2.2.1. Discrete Representation

Assigning a prior on () can be simplified if 3(¢)) may be ex-
panded in a countable basis of functions such that the prior is im-
posed in the discrete domain of expansion coefficients. With 3(1))
having constrained support in \w\gé, we can expand it by means of

Fourier basis functions {ej 2mmy |m € Z} in that domain [25]:

+3 _
B)e 2™ dy (3)

B) = Bme®™™, B =
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I'The mapping between 3(1)) and a finite set of its Fourier transform sam-
ples r(zq; A;) is not bijective [24].

where {3, } are the Fourier expansion coefficients.

In lieu of the prior on (1) we impose a prior over {3, }. This de-
scription is especially suited for applications involving smooth func-
tions 8(¢) as suggested by the following property of the Fourier
series expansion [26]:

Lemma 2.1. Let (¢)) € C" where C" is the space of r-times con-

tinuously differentiable functions over some domain. Then |Bm| <
(o]

T With o = sup,, |%/B(¢)\.

Thus, for any nicely behaved (1)) the high frequency Fourier
expansion coefficients diminish polynomially to zero, allowing good
approximate representation through a finite subset of low frequency
coefficients, which in the sequel we designate via the finite vector
3. We defer a full account of the quality of this approximation to an
extended future publication.

Next, impose i.i.d. Gaussian priors 8., ~ CN(0,02,), where o2, is
set following some initial measurements of sample functions 3(v))
or taking into account prior knowledge. For example if we have a-
priori knowledge that 3(¢))€C" we may set, following Lemma 2.1:

o2, ocm™" “)

which represents some least informative Gaussian prior respecting
polynomial variance decay. For the sequel we adopt the prior in (4)
and take r=1 to promote continuously differentiable functions.

2.2.2. Observation Model

With the prior stated in the discrete 3 domain as described above,
our next goal is to circumvent 3(v), directly stating the problem in
terms of the measurements fn and the coefficients (3,,, replacing the
continuous representation with a discrete counterpart. Substituting
(3) into (1) we have (where n = q + QI):

+3 ) g
T(xq;)‘l):/ 12 Zﬂme]%rmwe])\i’wqwdwzzKnmﬁm (5)

2 m

3o 2
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2
Plugging this into (2) we retrieve the observation model
fn:Z KnmBm + wn n=0,....N—1 (7)

and the sensing problem amounts to estimating the coefficients 3
given the observation vector f. As we have assumed Gaussian dis-
tributions throughout, the posterior P(3| f) is Gaussian with a con-
venient analytic form.

2.3. Cost Function

Our next step is to specify a cost function G(S), used for com-
parisons between different designs, and for choosing the best one.
Notice through (6) that the array design determines the coefficients
Knm through the set of positions S. With S fixed, the sensing
problem amounts to performing inference leading to the posterior
P(B|f). The problem of determining the quality of inference has
been extensively studied in the statistical literature in the context of
experimental design [15, 16]. Here we adopt the Bayes D-optimality
criterion whereby the quality of inference between random measure-
ments and a hidden random variables is given by the mutual infor-
mation between the two. In our setting this amounts to

G(S) = I(fs;8) = H(B) — H(B|fs) ®
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Where I(-;-) is the mutual information and H (-) the Shannon en-
tropy. The subscript S explicitly emphasizes the dependence of the
measurements on the set of sensor positions S. Notice that maxi-
mizing G(S) as a function of S can be equivalently viewed as maxi-
mizing the mutual information between f's and 3, or alternatively as
minimizing the uncertainty (entropy) in 3 given fs. Further notice
that evaluation of G(S) for our model (7) is easy. As we have noted
all the relevant distributions are Gaussian such that evaluation of (8)
may be accomplished by using

XeRF.X~AN(@O0,®) = H(X)=log((re)"detZ) (9)

3. ARRAY DESIGN PARADIGMS

In this section we define two multiple wavelength array design
paradigms, concisely formulated as combinatorial optimization
problems.

The fusion problem entails designing an array .S for collection of
measurements at a set of fixed wavelengths A. The full set of mea-
surements (taken at each location in all wavelengths in A) is jointly
used to infer 3. The set S is constrained to be in A and to be of size
no more than Q:

§* = argmaxg, 5c 4 |51<q I(fs:B). (10)

The robust problem entails designing an array S for collection of
measurements at a single wavelength A€ A, which is fixed but un-
known. Thus we are interested in guaranteeing good quality infer-
ence for any A€ A and solve the robust optimization problem of max-
imizing the worst-case performance achieved when operating the ar-
ray at any single wavelength. Concretely, let £2 be the set of samples
collected at a single wavelength A at the set of positions S, which
satisfies the same constraints as before. The design criterion is:

§* = argmaxg, gc 4 |51< Milrea 1(£5;8) (1D

4. SUBMODULAR OPTIMIZATION

In this section we prescribe efficient algorithms for the solution of
(10) and (11). We show that due to the structure of the cost function
G(S) an efficient approximation algorithm is known to exist with
strong theoretical guarantees. We survey relevant results and adapt
them to our needs, beginning with the following properties of set
functions [17]:

Definition 4.1. Let G : 2 — R be a set function.

(a) G is monotonic (increasing) if VSCT'CV we have G(S)<G(T).

(b) G is submodular if it exhibits decreasing marginals: ¥YSCTCV,
and z€V\T it holds that G(SU{z})—G(S) > G(TU{z})—G(T).

As it turns out, the cost function (8) is monotonic and submodu-
lar as the next result shows (this is similar to corollary 4 in [27]):

Theorem 4.1. Let A be defined as before, and define the set function
G : 2 = Raccording to G(S) = I(fs; 3). Then G is submodu-
lar and monotonic (increasing).

Proof. We just sketch the proof here. Monotonicity is evident from
the fact that adding additional elements to S’ cannot increase the pos-
terior uncertainty H (83| fs) and thus cannot decrease G(.S) (per (8)).
Submodularity may be proved by using generic conditioning prop-
erties of entropy. O

4.1. Submodular Maximization

Using Theorem 4.1 we recognize (10) as a maximization of a mono-
tonic submodular function under a cardinality constraint. The fol-
lowing fundamental lemma shows that the computationally efficient
greedy Algorithm 1 approximately solves it to within the best possi-
ble approximation factor:

Algorithm 1 Greedy Submodular Maximization
1: function S=GREEDYMAX(G(+), A, Q)

2: S+ 10
3: fori=1t0 QdoS « SU{argmax, 4 s G(SU{z})}

Lemma 4.1. (Nemhauser [17]) Let G be a monotonic, sub-
modular set function. Let S*=argmaxgc » s<q G(S) be an
optimal solutions, and S® a solution retrieved by the greedy
Algorithm 1. We have the following approximation guarantee:
G(S*) > (1 — 1)G(S*), and no polynomial time algorithm can
provide a better guarantee.

Algorithm 1 runs in time O(]|A|Q), linear in the size of the set
A and the number of selected elements @ [28]. However, more ef-
ficient variants of the algorithm have been suggested and analyzed.
The ’lazy greedy’ variant which was introduced in [28] was shown to
offer substantial running-time improvements in practice. Our numer-
ical experiments in Section 5 implement this more efficient variant
to reduce running time.

4.2. Robust Submodular Maximization

Let {G;(S)} be as set of monotone, submodular set functions and
consider the robust optimization problem

S = argmaxgc 4 1< Min; Gi(S) (12)

With Theorem 4.1 and defining G;(S)=I( fs’,\’ ; 3) we immediately
recognize (11) as an instance of (12).

It is known that no polynomial time algorithm approximating the
solution of (12) exists [22]. However, the following lemma suggests
that for integer-valued G;(S), Algorithm 3 is guaranteed to achieve
approximately optimal solution:

Lemma 4.2. (Krause [22]). For any integer Q), SAT (delineated in
Algorithm 3) finds a solution S* such that

min; G;(S*) > min; G;(S*) and |S*| <aQ (13)
where «a =1+ log(maxseca Z Gi(9)) (14)

Algorithm 2 Greedy submodular partial cover

1: function S=GPC(G.(S), ¢)

2: S0

3:  while G.(S) < cdo

4: S+ SUargmax, . 4 {Ge(SU{s}) — Ge(9)}

Lemma 4.2 guarantees that SAT will find an approximate opti-
mal set S* achieving performance at least as good as the true opti-
mal set S*, at a cost of using as many as o) elements of the set A
in lieu of the @ elements included in S*.

The extension of Lemma 4.2 to non integer-valued functions is dis-
cussed in [22] (section 7). One approach is porting these prob-
lems into integer-valued ones by scaling and rounding G, (.S). How-
ever, this requires careful manipulations of the guarantees in Lemma
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Multiple Wavelength Array Design, A=[1., 1.1, 1.2]
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Fig. 2: Multiple wavelength array designs. The grid of possible placements appears in blue and the selected locations as red markers.
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Fig. 3: Left: Robust design (top) and designs optimized for single wavelengths. Middle: Mutual Information vs. observation wavelength.
Right: Reconstruction MSE for Monte-Carlo experiment vs. observation wavelength.

Algorithm 3 Submodular saturation algorithm

1: function Sgesr=SAT(G1,...,Gm, A k, )

2 Cmin 4 05 Cmax + min; G;(A) ; Spest + 0
3 while (Cmax — Cmin) > -+ do

4: C < (Cmin + Cmax)/2
5.
6
7

S GPC(L >, min{Gi(9),c},c)
if | S| > ak then cimayx < ¢
else Comin ¢ C; Shes < S

4.2. Instead, [22] follows an empirical approach making the ad-hoc
choice a=1 for the implementation of Algorithm 3, and keeping the
non integer-valued G;(.S) unchanged. Based on extensive numerical
experiments it is empirically shown that under these conditions SAT
performs favorably. We follow this approach in our numerical exper-
iments described in Section 5, and empirically verify the usefulness
of the above choice when applied to our non integer-valued problem.

5. NUMERICAL EXPERIMENTS

We perform numerical experiments to exemplify array design under
the paradigms of Section 3 and the algorithms in Section 4.

5.1. Multiple Wavelength Array Design

First, we design arrays for the fusion setting as per (10) using the
lazy greedy submodular optimization algorithm of Section 4.1. We
take A={1,1.1,1.2}, the sensor position selection set A is a uni-
formly spaced grid of 161 positions in |z|<10, and we design an
array consisting of Q=7 locations. 3 is formed by approximating
{Bm} via the 101 lowest frequency coefficients®, and the prior for
Bm is set as per (4) with 7=1. We normalize {o2, } for unit average
scene power P using Parseval:

p= E/ B@)Pdp=E)  |bnl*=)  om=1 (15

The results are summarized in Fig. 2, where blue markers denote
the selection set A and red markers delineate the chosen set S. The
left subplot depicts a design for high Signal to Noise Ratio (SNR)
(defined as Q%) of 30dB. The right subplot repeats the experiment
at a lower SNR of 10dB. This design tends to limit the spread of
the sampling positions as samples become less reliable and there is
value in limiting sampling diversity for the sake of concentrating

2We empirically find that refining the sampling grid, or including more
Fourier coefficients does not significantly change the design.

more samples in valuable regions. ~

The performance in terms of mutual information I(fs;3) for the
selected locations S appears in the plot title. Notice for example that
for the 10dB SNR design, the achieved mutual information is 20.76.
Using Lemma 4.1 we have that the optimal design cannot achieve
mutual information better than (1—1)7'20.76 = 32.84.

5.2. Robust Single Wavelength array design

Next, we design arrays for the robust setting as per (11) using the
SAT algorithm of Section 4.2. We take A as before, A={1,2, 3,4},
the number of elements is Q=9 and we assume a SNR of 10dB. In
Fig. 3 (left) we plot several designs. The top configuration is the
robust design generated via Algorithm 3, fixing a=1. The bottom
four configurations depict arrays each optimized for a single wave-
length. These were generated by applying the greedy design scheme
of Section 4.1 with a single measurement wavelength from the set A.
The figure shows that for a single observation wavelength, we obtain
configurations that are generic truncated uniform % arrays [1]. How-
ever, when considering observations across multiple possible wave-
lengths, as is done for the robust design, the resulting configuration
is no longer uniform, but consists of a mixture of large and small
inter-element spacings, to cater to all possibilities.

Fig. 3 (middle) plots the performance of these arrays in terms of the
corresponding mutual information 7(fs; 3) when the actual wave-
length at which measurements are collected is swept in 0.9<A<4.4.
Each of the four single-wavelength arrays (dashed lines) maximizes
the mutual information when operated at the wavelength for which
it was designed, as expected. However, at mismatched wavelengths
performance deteriorates. In contrast, the robust array (solid line)
does not perform as well as the specialized single wavelength arrays
at their target wavelengths. But, while those specialized designs are
very sensitive to misspecified wavelengths, the robust design flexi-
bly performs well across the entire range of wavelengths.

Fig. 3 (right) summarizes a Monte-Carlo experiment set up to em-
pirically evaluate Mean Square Error (MSE) performance in scene
reconstruction using our robust design. We have drawn 2000 scenes
distributed as prescribed in Section 2.2.1, and collected correspond-
ing noisy measurements at various wavelengths using the robust and
the four single wavelength optimized arrays. We repeatedly per-
formed maximum likelihood estimation of the expansion coefficients
3, and synthesized an estimated scene B(w) according to (3). The
MSE discrepancy between B(w) and the true scene was recorded.
Evidently, the mutual information performance of Fig. 3 (middle) is
indicative of MSE performance, with the robust design exhibiting
best worst-case results.
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