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ABSTRACT

This paper proposes a compressive pulse-Doppler radar that

works through one-bit quantization of the received noisy sig-

nal. The one-bit quantization is performed by comparing the

signal with a time-varying reference level. Considering the

sparsity of the targets in the range-Doppler domain, the prob-

lem is dealt with by a sparse recovery method. The proposed

method leads to an optimization problem that can be tackled

by a convex approximation. Numerical examples show that

the proposed method has a promising performance in the de-

tection/estimation of the target parameters. Moreover, it is

seen that in low signal to noise ratio, increasing the sampling

rate at the receiver side is a compensating factor that effec-

tively improves the performance.

Index Terms— One-bit quantization, compressive sam-

pling, pulse-Doppler radar

1. INTRODUCTION

Signal quantization is a key task in digital signal processing

applications. The most ideal case of quantization in terms of

signal amplitude resolution is to have infinite precision sam-

ples. In practice however, the amplitude quantization preci-

sion (or equivalently the quantization bit-depth) is in tradeoff

with the sampling rate, cost, and energy consumption.

From the bit-depth point of view, the most extreme form

of quantization is to reduce the signal to one bit per sample,

which can be performed simply by comparing the signal to

a known reference level. This way, one-bit sampling is in

fact to treat the quantized measurements as sign values in-

stead of their real values. A main advantage of one-bit quan-

tization is that it allows very high sampling rates, at low cost

and with low energy consumption. In some applications, the
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power consumption of one-bit sampling at a rate of 240 gi-

gasamples per second, is only about 10 milliwatts which is

less than 5 percent of the power that a conventional analog-

to-digital converter (ADC) typically consumes [1,2]. This en-

ergy efficiency is one of the motivating factors for using one-

bit sampling in millimeter wave communications and massive

multiple-input multiple-output communications systems [4].

Moreover, the conventional ADC is rather expensive1; this is

while the one-bit sampling is extremely cheap, allowing for a

totally affordable system.

One-bit sampling has so far been studied in the literature

from different perspectives. Some papers have looked into the

topic in a classical statistical framework [5–9]. The topic has

also been studied from a sampling/reconstruction viewpoint

in works such as [10] and more recently in [11].

Most of the recent works on one-bit sampling however,

study the problem from a compressive sensing viewpoint [12–

23]. It has been shown that sparse signals can be recovered

with high accuracy from a sufficiently large record of one-bit

measurements [15]. The early works in compressive one-bit

sampling share a common limiting feature, which is consid-

ering a fixed quantization threshold (usually zero). Indeed,

as argued in [21], with this limitation it is not possible to de-

termine the actual energy of the unknown signal. Some of

the recent papers in contrast, have considered random time-

varying thresholds [21–23]. Specifically in [23], the problem

of estimating signal parameters after quantization to single bit

samples is considered where the one-bit samples are captured

by comparing the signal to a time-varying reference level.

The authors of the present paper have recently proposed

the idea of a radar sensing via one-bit compressive sampling

in [24]. There, it has been shown that by quantizing the re-

ceived noisy signal to one bit (using time-varying thresholds),

it is possible to perform the radar sensing for stationary tar-

gets. In this paper, we move on to a more practical (and

of course more demanding) case of radar sensing for mov-

ing targets which adds the Doppler effect to the scenario.

Specifically, we propose a compressive pulse-Doppler radar

1Conventional ADCs can typically cost thousands of dollars, even at sam-

pling rates of 2 or 3 gigasamples per second [3].
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that works through one-bit quantization of the received noisy

signal, which is performed by comparing the signal with a

time-varying threshold. Since the targets are sparse in the

range-Doppler domain, by using a sparse recovery method,

the radar sensing objective is expressed as an optimization

problem that can be tackled numerically. Simulation results

illustrate that the proposed method has a promising perfor-

mance in the sensing of the targets. It is further seen that in

low signal to noise ratio (SNR), increasing the sampling rate

at the receiver compensates for the SNR, hence improving the

performance.

The remainder of the paper is organized as follows. In

Section 2, we derive our model for the one-bit compressive

pulse-Doppler radar and the relevant sensing problem is for-

mulated. Then we propose a solution which employs a norm-

based sparse framework. Numerical examples are then pre-

sented in Section 3 to show the accuracy of the proposed

method. Finally, Section 4 concludes the paper.

2. PROBLEM STATEMENT AND THE PROPOSED

SOLUTION

2.1. Problem Formulation

Considering a pulse-Doppler radar under a single-input

single-output setup, the transmitted multi-pulse intra-coded

signal (shown in Fig. 1) is given by

sT (t) =

L−1∑

ℓ=0

N−1∑

n=0

cnp(t − nτ0 − ℓTp), (1)

where p(·) is the basic sub-pulse with width τ0, N is the

number of sub-pulses in each pulse, L is the total number of

pulses, and {cn}
N−1
n=0 is the code sequence for all pulses, i.e.,

∀ℓ = 0, . . . , L − 1, cn,ℓ = cn. (2)

Now suppose that the range and Doppler domain of the radar

are grided into Kr and Kd bins, respectively. Then, at the

receiver we have

sRec(t) =

Kr∑

kr=1

Kd∑

kd=1

αkrkd
sT (t − τkr

)ejωk
d

t + ǫ(t)

=
∑

kr,kd

∑

ℓ,n

αkrkd
cnp(t − nτ0 − ℓTp − τkr

)ejωk
d

t + ǫ(t),

where τkr
, ωkd

and αkrkd
are the time delay, Doppler fre-

quency, and the (complex-valued) gain associated with the

target with the index pair (kr, kd) in the range/Doppler do-

main, and ǫ(t) is the additive noise. Define the gain matrix

α ,




α11 · · · α1Kd

...
. . .

...

αKr1 · · · αKrKd


 , (3)

c0 c
N−1· · · c0 · · · · · ·c0c

N−1
c

N−1

Tp = K1τ0

· · ·
0 1 L− 1

· · ·· · ·· · ·

τ0

Fig. 1. The transmitted multi-pulse intra-coded signal.

and let

f(t) ,




L−1∑
ℓ=0

N−1∑
n=0

cnp(t − nτ0 − ℓTp − τ1)

...
L−1∑
ℓ=0

N−1∑
n=0

cnp(t − nτ0 − ℓTp − τKr
)




, (4)

where Tp = Krτ0. Defining

φ(t) , [ejω1t, · · · , ejωK
d

t]T , (5)

the received signal can be restated as follows

sRec(t) = fT (t)αφ(t) + ǫ(t), (6)

where (·)T denotes the transpose.

In order to quantize the received signal, it is compared to

a time-varying threshold h(t) , hR(t) + ihI(t) ∈ C, and

the sign of the resulting difference is observed for the real

and imaginary parts. Let y(t) , yR(t) + iyI(t) denote the

observed data at time t, i.e.,

yR(t) = sgn(Re [sRec(t)] − hR(t)) (7)

= sgn
(
Re

[
fT (t)αφ(t) + ǫ(t)

]
− hR(t)

)
,

and

yI(t) = sgn(Im [sRec(t)] − hI(t)) (8)

= sgn
(
Im

[
fT (t)αφ(t) + ǫ(t)

]
− hI(t)

)
,

in which Re[·] and Im[·] denote the real and imaginary parts,

respectively, and

sgn(x) =

{
1 x ≥ 0
−1 x < 0

(9)

Next, assume that M samples are captured at times t1, . . . , tM ,

with a rate of r/τ0 (r ∈ Z+) samples-per-second according

to

tm = m
τ0

r
, m = 1, . . . , M. (10)

Let h , hR + ihI , ǫ, and y , yR + iyI respectively denote

the vector of the thresholds, the vector of the additive noise

samples, and the vector of the quantized observed data i.e.,






h , [h(t1), . . . , h(tM )]T ,

ǫ , [ǫ(t1), . . . , ǫ(tM )]T ,

y , [y(t1), . . . , y(tM )]T .

(11)
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Defining

F ,
[
f(t1)

∣∣f(t2)
∣∣ · · ·

∣∣f(tM )
]T

, (12)

and

Φ , [φ(t1)|φ(t2)| · · · |φ(tM )], (13)

the observed data can be expressed compactly as follows

{
yR = sgn(Re [Diag{FαΦ} + ǫ] − hR),
yI = sgn(Im [Diag{FαΦ} + ǫ] − hI)

(14)

where Diag{·} gives the diagonal elements of a matrix.

Now, the problem is to estimate the matrix α from the

quantized observed data, i.e., y.

2.2. The Proposed Solution

To deal with the aforementioned problem, we begin by vec-

torizing the matrix α (column by column) as follows

α̃ , [α11, · · · , αKr1 α12, · · · , αKr2 · · · α1Kd
· · ·αKrKd

]T

(15)

It is verified that Diag{FαΦ} can be recast as




ejω1t1fT (t1) · · · ejωK
d

t1fT (t1)
ejω1t2fT (t2) · · · ejωK

d
t2fT (t2)

...
...

...

ejω1tM fT (tM ) · · · ejωK
d

tM fT (tM )


 α̃

= (11×Kd
⊗ F) ⊙ (ΦT ⊗ 11×Kr

)α̃, (16)

where ⊗ and ⊙ are the Kronecker and the Hadamard prod-

ucts, respectively, and 1 is a matrix of all ones.

Thus, the observed quantized data can be expressed as





yR = sgn

(
Re[F̃α̃ + ǫ] − hR

)
,

yI = sgn
(
Im[F̃α̃ + ǫ] − hI

)
,

(17)

in which

F̃ , (11×Kd
⊗ F) ⊙ (ΦT ⊗ 11×Kr

), (18)

and α̃ has been defined in (15). Noting the sparsity of the

targets in the range and Doppler domains, it is expected that

many of the components of the vector α̃ will be zero. Thus,

the problem is to find a vector α̃ which is sparse, consistent

with the measurement with small fitting error. The problem

is therefore expressed in a form similar to the one in [23] and

[24], and it thus leads to the following optimization problem

min
α̃,z

‖ z ‖2 +λ ‖ α̃ ‖0 (19)

s.t.
yR ⊙ (Re[F̃α̃ + z] − hR) ≥ 0

yI ⊙ (Im[F̃α̃ + z] − hI) ≥ 0

where ‖ · ‖ is the zero norm, z is the fitting error, and λ is a

user parameter which adjusts the sparsity of the result. Note

that the zero norm (with which the problem is hard to solve)

can be well approximated by the ℓ1-Norm (‖ · ‖1) that makes

the problem convex and tractable [25].

In the sequel, (without loss of generality) assume that the

Doppler grids are equally spaced, i.e.,

ωkd
= −ωD + (kd − 1)∆, for kd = 1, . . . , Kd (20)

where ωD is the maximum possible Doppler frequency of the

potential target, and ∆ = 2ωD

Kd−1 . In this way, we have

φ(t) = [e−jωDt, e−j(ωD−∆)t, · · · , ej(ωD−∆)t, ejωDt]T . (21)

Then, from (21) and (10) it can be seen that Φ is a Vander-

monde matrix given by

Φ =
[
φ

∣∣∣φ(2)
∣∣∣· · ·

∣∣∣φ(M)
]

, (22)

where and φ
(i)

denotes the i’th Hadamard-power of φ.

φ =
[
e−jωD

τ0

r , e−j(ωD−∆)
τ0

r , · · · , ejωD

τ0

r

]T

, (23)

Similarly we assume that the range grids are also equally

spaced such that they represent delay steps equal to τ0/r, i.e.,

τkr
= kr

τ0

r
, kr = 1, . . . , Kr (24)

For n = 0, . . . , N − 1, defining cn , cn1r×1, and assuming

reasonably that Kr > rN , from (2), (4), (10), (12), and (24)

it can be seen that the matrix F is given by

F =




c0
...

. . .

cN−1
. . .

. . .
. . .

. . . c0

. . .
...

cN−1

c0
...

. . .

cN−1
. . .

. . .
. . .

. . . c0

. . .
...

cN−1
...

...
c0
...

. . .

cN−1
. . .

. . .
. . .

. . . c0

. . .
...

cN−1




1

r(N − 1) + 1

Kr

Kr + rN − r

rKr + 1

(L − 1)rKr + 1

(25)
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| X = 7

Y = 18
Z = 0.4148

X = 18
Y = 39
Z = 0.4374
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X = 15
Y = 125
Z = 0.1549

(b)

Fig. 2. The sensing performance of the proposed radar system

for Example 1: (a) The estimated vectorized target indices ̂̃α;

(b) Range-Doppler representation of the targets.

in which the entries outside the shown repetitive diagonal

boxes are all zero, and the column on the right side of the

matrix is the starting row index for the relevant inline entry2.

Having characterized F and Φ, we are now ready to eval-

uate the performance of the proposed method, by numerically

solving the minimization problem in (19).

3. NUMERICAL EXAMPLES

In this section, we provide numerical examples to evaluate

the performance of the proposed method. In all examples,

the CAN algorithm [26] is used to produce the complex code

c0, . . . , cN−1. We consider hR and hI as independent vectors

of i.i.d. random variables uniformly distributed over [−1, 1]
(which is the range for the normalized amplitude of the re-

flected signals). Using ℓ1-norm approximation in (19) and by

setting λ = 1, we use Matlab’s CVX toolbox [27] to find α̃.

In the first two examples, the targets are randomly located

by producing random i.i.d. delay and Doppler frequency in-

dices. In Example 3 however, we have used the same target

indices as those in Example 2, for the sake of comparison.

Example 1: Consider the scenario with parameters set ac-

cording to Table 1, in which Nt is the number of targets and

the SNR is measured with respect to the weakest reflected sig-

nal. As it can be seen in Fig. 2, the proposed method has been

able to detect all four targets accurately.

Example 2: Consider the same setup of Example 1 with a

lower SNR of 2 dB. As it can be seen in Fig. 3, by decreas-

2Considering Kr > rN , the only case in which the diagonal boxes over-

lap is with r = 1 for which rKr + 1 < Kr + rN .

Table 1. The parameters in Example 1.

Nt SNR N r Kr Kd L τ0 ωD λ

4 6 dB 16 2 200 21 5 0.01 ms 2000π rad/sec 1

0 5 10 15 20 25

050100150200
0

0.5

1

1.5

Doppler Index (kd)

Targets: (Doppler Index, Range Index)={(16,8) (15,65) (13,83) (17,173)}

Range Index (kr)

|α̂
k
r,
k
d
|

X = 15
Y = 65
Z = 0.271

X = 16
Y = 8
Z = 0.371

X = 18
Y = 83
Z = 1.646

X = 17
Y = 173
Z = 0.379

Fig. 3. The performance of the proposed method for Exam-

ple 2; The erroneous estimated target is shown in dashed box.

0 5 10 15 20 25

050100150200
0

0.2

0.4

0.6

Doppler Index (kd)

Targets: (Doppler Index, Range Index)={(16,8) (15,65) (13,83) (17,173)}

Range Index (kr)

|α̂
k
r,
k
d
|

X = 17
Y = 173
Z = 0.479 X = 13

Y = 83
Z = 0.269

X = 15
Y = 65
Z = 0.327

X = 16
Y = 8
0.425

Fig. 4. The sensing performance of the proposed method for

Example 3.

ing the SNR, an error has occurred in the estimation of the

Doppler index for one of the targets. As shown by the red

dashed boxes, the Doppler index of the third target has been

estimated incorrectly as 18, instead of the actual index 13.

Example 3: Consider the same scenario in Example 2, but

with a higher sampling rate of r = 3. As it can be observed in

Fig. 4, increasing the sampling rate compensates for the low

SNR and improves the sensing performance, such that all four

targets are identified accurately.

4. CONCLUSION

A compressive pulse-Doppler radar based on one-bit quan-

tization of the received noisy signal was proposed. Due to

the sparsity of the targets in the range-Doppler domain, the

problem was approached by a sparse recovery method which

leads to an optimization problem that could be tackled numer-

ically. Numerical examples showed that the proposed sens-

ing method has a promising performance. It was further seen

that increasing the sampling rate at the receiver can compen-

sate the performance loss of low SNR. This feature makes the

proposed method even more favorable, knowing that one-bit

quantization allows for high sampling rates at a low cost.
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