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ABSTRACT
Identifying the location of a target is a fundamental application in
multistatic sonar. Numerous attempts have been made to improve the
accuracy, computational efficiency and robustness of target position-
ing. Previous studies mostly use time delay and angle measurements
for localization, or time delays and Doppler shifts if relative motions
exist among the transmitters, target and receivers. This paper consid-
ers the joint use of time delay, Doppler shift and angle measurements
to locate a moving target. We develop an explicit algebraic solution
to the problem, and illustrate the benefit of using all three kinds of
measurements. The proposed solution is shown by theoretical per-
formance analysis and confirmed by simulations to be able to reach
the Cramer-Rao Bound (CRB) accuracy under Gaussian noise, when
the noise level is not significant.

Index Terms— Arrival angle, Doppler shift, localization, mul-
tistatic sonar, time delay

1. INTRODUCTION

Sonar localization typically refers to determining the position and
possibly velocity of a target using a monostatic, bistatic or multi-
static sonar. Traditional sonar has both the transmitter and receiver
co-located together. Due to the improved precision as well as better
system robustness and flexibility, multistatic sonar with distributed
deployment of acoustic transmitters and receivers has been devel-
oped for submarine detection, multi-target tracking and other appli-
cations [1]-[7]. A multistatic system consists of several transmitter-
receiver pairs, where each receiver can observe the direct signal from
a transmitter, the echo reflected from the target and the arrival angle
of the echo. To locate a stationary target, a common approach is to
use the time delay between the direct and echo signals [6]-[11] to-
gether with the bearing angle [12]-[14]. When the target is moving,
Doppler shift between the direct and echo signals is present and it
can be exploited for positioning and velocity estimation [14]-[16].

A number of multistatic localization techniques have been pro-
posed in the literature over the years [6]-[17]. Specifically, [7] de-
veloped a method based on the Wiener filter. Hanusa et al. [16] pro-
posed a maximum likelihood (ML) approach that utilizes Doppler
measurements only. After the analysis of three types of active sonar
systems, [12] applied the least-squares (LS) algorithm to the weight-
ed measurements including distances and azimuths. While Falcone
et al. [14] explored the use of range, Doppler and angle measure-
ments in the ML location estimation, Chalise et al. [11] took another
approach by converting the positioning problem to convex optimiza-
tion via semi-definite relaxation (SDR). These solutions are iterative
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and often require good initial guesses close to the actual solution.
The SDR location estimate is not able to reach the optimum CRB
performance even when the measurements are accurate.

Closed-form solutions have also been derived in the literature.
Rui and Ho [8] developed a localization algorithm for a stationary
target using arrival time differences and bearing angles. Recently,
we obtained in [9] a solution for estimating the position and velocity
of a moving target using time delay and Doppler shift measurements
and encouraging results were presented. Nevertheless, we have not
come across any closed-form solution that is able to exploit all three
kinds of measurements, namely time delays, Doppler shifts and ar-
rival angles. It is the purpose of this paper to develop such a solution,
with the objective of achieving the CRB performance.

We would like to differentiate the works here from previous. The
localization techniques found in the literature mostly use two kinds
of measurements, either time delays and arrival angles, or time de-
lays and Doppler shifts. Falcone et al. [14] exploited all three kinds
of measurements for moving target localization. But the two meth-
ods proposed in [14], an LS algorithm assuming identical variances
for different kinds of measurements and an ML estimator, are both
iterative and require good initialization. We cannot apply the solu-
tion from [8] directly due to the presence of the extra Doppler shifts
and the additional unknown target velocity. The method presented
here is also different from that in [9] which estimates the correction
to a preliminary solution to obtain the final localization result.

Throughout the paper, we shall use the common convention that
bold lower and upper letters represent column vector and matrix.
I and O are identity and zero matrices of appropriate size. 1 is a
column vector of ones. ao is the true value of a and ∆a is their
difference. a(k1 : k2) is a column vector containing the k1th to k2th
elements of a. diag(a) is a diagonal matrix with the elements of a
on the diagonal. sign(∗) is the sign function. � and ./ denote the
element-by-element product (Hadamard product) and division.

We shall first introduce the problem and measurement models
in Section 2. Section 3 develops the proposed closed-form solution.
Section 4 presents the theoretical performance analysis. Section 5
contains the simulations and Section 6 concludes the paper.

2. PROBLEM STATEMENT

We are interested in determining the position of a moving target
uo = [xo, yo]T ∈ R2 and its velocity u̇o = [ẋo, ẏo]T ∈ R2

on the 2-D plane using a multistatic sonar system having M trans-
mitters ti = [xti , yti ]

T ∈ R2, i = 1, 2, . . . ,M , and N receivers
sj = [xsj , ysj ]T ∈ R2, j = 1, 2, . . . , N . The transmitters and re-
ceivers are all static and their accurate positions are available. Fig. 1
illustrates the localization scenario in consideration.

Signals from different transmitters are assumed disjoint in time
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and/or in frequency. Receivers observe the signal of each transmit-
ter from the direct propagation and the reflection of the moving tar-
get. Maximizing the cross-ambiguity function between the direct
and reflected signals provides a time delay and Doppler shift mea-
surements, where the latter comes from target motion. Also, each
receiver has the ability to estimate the bearing angle of the target
from the arrival direction of the echo signal [12]. Let roi,j be the true
time delay multiplied with the signal propagation speed. It is related
to the distances among the transmitter i, receiver j and the target by

roi,j = ‖uo − ti‖+ ‖uo − sj‖ − ‖ti − sj‖ . (1)

Here, ‖ ∗ ‖ represents the Euclidean norm. For each transmitter-
receive pair, (1) defines an ellipse on which the target lies.

The time derivative of (1) gives the Doppler shift model

ṙoi,j = ρT
uo,ti u̇

o + ρT
uo,sj u̇

o (2)

where the true range rate ṙoi,j is equal to the Doppler shift between
transmitter i and receiver j divided by the transmitter carrier fre-
quency and multiplied by the signal propagation speed. The notation
ρa,b = (a − b)/‖a − b‖ denotes a unit vector from b to a. The
bearing angle of the target observed at receiver j is [12][13]

θoj = tan−1

(
yo − ysj
xo − xsj

)
(3)

where θoj ∈ (0o, 360o).
The observed measurements are ri,j = roi,j + ∆ri,j , ṙi,j =

ṙoi,j + ∆ṙi,j and θj = θoj + ∆θj . Grouping distance, range rate
and angle measurements give the column vectors r, ṙ and θ. The
measurement vector is m = [rT , ṙT ,θT ]T = mo + ∆m. The ad-
ditive noise vector ∆m = [∆rT ,∆ṙT ,∆θT ]T is zero-mean Gaus-
sian with covariance matrix Qm. As the three kinds of measure-
ments are in general uncorrelated with one another [14], Qm =
diag(Qr,Qṙ,Qθ) is block diagonal with diagonal blocks Qr, Qṙ

and Qθ being the covariance matrices of r, ṙ and θ.
The objective is to estimate the unknown target location vector

γo = [uoT , u̇oT ]T using the measurements m, under the assump-
tion that the time variations of the target reflected signals from d-
ifferent transmitters can be neglected. Such an assumption is valid
when the signal propagation speed is much larger than the target ve-
locity [2]. Generalizing the proposed technique to the 3-D scenario
is straightforward.

3. SOLUTION

To solve the problem in Section 2, we shall follow the approach
from [8] by introducing nuisance variables and obtaining the solu-
tion through successive stages. The solution from [8] is not direct-
ly applicable here because of the extra Doppler shift measurements
and the additional unknown target velocity. The nuisance parame-
ters are used to transform the nonlinear measurement equations into
pseudo-linear ones that enable the application of linear estimation
techniques. Different stages reduce successively the number of nui-
sance variables to reach the final solution.

3.1. Stage-1

We start with expressing the time delay equation (1) as roi,j −‖uo−
ti‖+ ‖ti − sj‖ = ‖uo − sj‖. Squaring both sides and substituting

roi,j = ri,j −∆ri,j , we arrive at the distance solution equation

2‖uo − sj‖∆ri,j ≈

− 2(ti − sj)
Tuo − 2(ri,j + ‖ti − sj‖)‖uo − ti‖

+ r2i,j + 2ri,j‖ti − sj‖+ 2tTi (ti − sj)

(4)

where the squared error term ∆r2i,j has been dropped. Taking the
time derivative of (4) gives the Doppler solution equation

‖uo − sj‖∆ṙi,j + ρT
uo,sj u̇

o∆ri,j ≈

−(ti − sj)
T u̇o − (ri,j + ‖ti − sj‖)ρT

uo,ti u̇
o

−ṙi,j‖uo − ti‖+ ri,j ṙi,j + ṙi,j‖ti − sj‖
(5)

where the approximation comes from ignoring ∆ri,j∆ṙi,j . Besides,
we have from (3) that sin θoj (xo − xsj ) = cos θoj (yo − ysj ). The
angle noise ∆θj is typically quite less than θj . Hence, we have [13]

sin(θj −∆θj) ≈ sin θj −∆θj cos θj (6a)

cos(θj −∆θj) ≈ cos θj + ∆θj sin θj . (6b)
As a result, the angle solution equation is

‖uo − sj‖∆θj ≈ pT
j u

o − pT
j sj (7)

where pj = [sin θj ,− cos θj ]
T . We now try to solve for γo from

(4), (5) and (7).
Note that (4) is a nonlinear equation in uo but appears to be lin-

early related to uo and ‖uo − ti‖. Similarly, the nonlinear equation
(5) is linear with respect to u̇o, ρT

uo,ti u̇
o and ‖uo − ti‖. The idea

here is to introduce the nuisance parameters

αo
i = ||uo − ti|| and βo

i = ρT
uo,ti u̇

o (8)

assume they are independent of uo and u̇o, and apply the weighted
least-squares (WLS) minimization to obtain a solution.

Let αo = [αo
1, α

o
2, ..., α

o
M ]T and βo = [βo

1 , β
o
2 , ...β

o
M ] be the

collections of nuisance parameters, whereM is the number of trans-
mitters. Ignoring the approximation errors, stacking (4), (5) and (7)
over transmitters and receivers yield the matrix equation

B1∆m = h1 −G1ϕ
o
1 (9)

whereϕo
1 = [uoT ,αoT , u̇oT ,βoT ]T is the Stage-1 unknown vector,

the vector h1 contains the terms of known values, the matrix G1

contains the factors multiplied with ϕo
1 and B1 is a sparse matrix

containing factors multiplied with the measurement noises.
The linear form of (9) enables us to obtain the WLS solution

ϕ1 = [uT
1 ,α

T , u̇T
1 ,β

T ]T = (GT
1 W1G1)−1GT

1 W1h1 (10)

where the weighting matrix is

W1 = B−T
1 Q−1

m B−1
1 . (11)

Note that B1 depends on the unknowns uo and u̇o. A simple ap-
proach to handle this problem is to replace B1 with an identity ma-
trix to generate an initial solution from which W1 can be better
approximated, which can then be used to produce a more accurate
estimate of ϕo

1.
Under small measurement noise conditions (see Section 4), the

bias of ϕ1 is negligible and its covariance matrix is approximately
equal to [19]

cov(ϕ1) ≈ (GT
1 W1G1)−1. (12)

u1 and u̇1 are what we are interested in. Nevertheless, α and
β are related to the target location parameters γo as well but their
correlations with them have been ignored to allow for a simple solu-
tion. Next, we shall explore the functional relationships between the
nuisance parameters and γo to refine the localization result.
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3.2. Stage-2

If we express αo
i as αo

i = αi − ∆αi, where ∆αi is the estimation
error, and square both sides, (8) can be written as

2αi∆αi ≈ α2
i − tTi ti + 2tTi u

o − uoTuo. (13)

The approximation comes from dropping ∆α2
i that is relatively s-

mall with respect to 2αi∆αi. (13) contains a total of M equations
that relate the target position uo with α.

Next, evaluating the product αo
iβ

o
i = (αi −∆αi)(βi −∆βi),

substituting (8) and dropping the second-order error ∆αi∆βi give

βi∆αi + αi∆βi ≈ αiβi + tTi u̇
o − uoT u̇o. (14)

(14) gives another M equations that relate the target position and
velocity with α and β.

To allow for a simple solution, we introduce in this stage two
nuisance variables

ζo = uoTuo and ηo = uoT u̇o (15)

and define the unknown vector as

ϕo
2 = [uoT , ζo, u̇oT , ηo]T . (16)

The collection of (13) and (14) for i = 1, 2, . . . ,M together with
∆u1 = u1 − uo and ∆u̇1 = u̇1 − u̇o form the matrix equation
with (2M + 2) rows,

B2∆ϕ1 = h2 −G2ϕ
o
2. (17)

where ∆ϕ1 = [∆uT
1 ,∆α

T ,∆u̇1,∆β
T ]T and we have neglected

the approximation errors. In (17), B2 and h2 are from the values
of the Stage-1 solution ϕ1 and G2 contains only unity and ti. The
WLS solution to (17) is

ϕ2 = [uT
2 , ζ, u̇

T
2 , η]T = (GT

2 W2G2)−1GT
2 W2h2 (18)

where the weighting matrix is

W2 = B−T
2 cov(ϕ1)−1B−1

2 . (19)

The bias of ϕ2 is linearly proportional to that of ϕ1 which is
assumed to be relatively small compared to variance over the small
error region. The covariance matrix of ϕo

2 is

cov(ϕ2) ≈ (GT
2 W2G2)−1 . (20)

3.3. Stage-3

We would like to further improve the target location estimate by ex-
ploiting the values of the nuisance variables ζ and η. Using Hadamard
product (element-by-element multiplication), we have from (15)

∆ζ = ζ − 1T (uo � uo) (21)

∆η = η − 1T (uo � u̇o) . (22)

In addition, expanding u2 � u2 = (uo + ∆u2)� (uo + ∆u2)
and u2�u̇2 = (uo+∆u2)�(u̇o+∆u̇2), and dropping the second
order errors ∆u2 �∆u2 and ∆u2 �∆u̇2 yield

2u2 �∆u2 ≈ u2 � u2 − uo � uo (23a)

u̇2 �∆u2 + u2 �∆u̇2 ≈ u2 � u̇2 − uo � u̇o . (23b)

We define the unknowns in Stage-3 as

ϕo
3 = [(uo � uo)T , (uo � u̇o)T ]T (24)

to take advantage of the linear forms in (21)–(23b). Collecting the
four equations together and ignoring the approximation errors yield

B3∆ϕ2 = h3 −G3ϕ
o
3 (25)

where ∆ϕ2 = [∆uT
2 ,∆ζ,∆u̇T

2 ,∆η]T . The matrices B3 and G3

and the vector h3 should be clear from (21)–(23).
The WLS solution for ϕo

3 is readily available as

ϕ3 = (GT
3 W3G3)−1GT

3 W3h3 (26)

and the weighting matrix is

W3 = B−T
3 cov(ϕ2)−1B−1

3 . (27)

The estimate ϕ3 has negligible bias when the noise level is s-
mall, and its covariance matrix is

cov(ϕ3) = (GT
3 W3G3)−1 . (28)

3.4. Stage-4

The last processing stage maps ϕ3 back to the target position and
velocity. From (24) and to eliminate the sign ambiguity, the final
estimate of the target location vector γo is γ = [uT , u̇T ]T , where

u = diag(sign(u1)) ·
√
ϕ3(1 : 2) (29a)

u̇ = ϕ3(3 : 4)./u. (29b)

The operation in (29b) assumes that none of the coordinates in the
target position estimate is near zero. If this happens, applying a
change in the coordinate origin before processing for localization
can eliminate this problem.

Taking the differential of (24), the localization error is

∆γ =

[
∆u
∆u̇

]
= B−1

4 ∆ϕ3 (30)

where

B4 =

[
diag(2uo) O
diag(u̇o) diag(uo)

]
(31)

and ∆ϕ3 = ϕ3 − ϕo
3 is the Stage-3 estimation error. As a conse-

quence, the proposed algorithm has an estimation covariance matrix

cov(γ) = B−1
4 cov(ϕ3)B−T

4 . (32)

Remark: The algorithm development applies approximations by
neglecting the second-order error terms (see (4), (5), (13), (14) and
(23)). Ignoring them leads to some performance degradation in the
localization result, however it is relatively insignificant (see e.g., [18]
for more discussions). It can also cause the estimation performance
to deviate from the CRB earlier as the noise level increases. (see
Section 4).
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Fig. 1. Localization scenario.
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4. PERFORMANCE ANALYSIS

The CRB for estimating the unknown γo is equal to the inverse of
the Fisher Information Matrix (FIM). It is given by [6] [19]

CRLB(γo) =
(
∇TQ−1

m ∇
)−1

(33)

where

∇ =

[
∂mo

∂uo
,
∂mo

∂u̇o

]
. (34)

We next evaluate the covariance matrix of the proposed location
estimator cov(γ) and show that under the following two small mea-
surement noise conditions, we are able to reach the CRB accuracy,

(C1) |∆ri,j | � roi,j , |∆ṙi,j | � ṙoi,j , |∆θj | � |θoj |,
(C2) |∆ri,j | � ‖uo − sj‖, |∆ṙi,j | � ‖uo − sj‖, |∆θj | �

‖uo − sj‖.
The first condition requires the measurement noise be small rel-

ative to the actual value. The second condition is satisfied with the
target not close to any receiver.

The proof starts by taking the inverse on both sides of (32) and
substituting successively the expressions of cov(ϕ3), W3, cov(ϕ2),
W2, cov(ϕ1) and W1, which results in

cov(γ)−1 = GT
4 Q

−1
m G4 (35)

where G4 = B−1
1 G1B

−1
2 G2B

−1
3 G3B4. After putting the defi-

nitions of B1, G1, B2, G2, B3, G3 and B4, and applying some
algebraic manipulations, G4 can be expressed in the following par-
titioned form

G4 =

G4,r O

G
(1)
4,ṙ G

(2)
4,ṙ

G4,θ O

 . (36)

It can be shown that under (C1) and (C2),

G4,r ≈ ∂ro/∂uo, G
(1)
4,ṙ ≈ ∂ṙ

o/∂uo,

G
(2)
4,ṙ ≈ ∂ṙ

o/∂u̇o, G4,θ ≈ ∂θo/∂uo.
(37)

In other words,
G4 ≈∇ . (38)

Comparing (35) with (33) completes the analysis that the proposed
algorithm can reach the CRB performance under conditions (C1) and
(C2).

5. SIMULATIONS

The simulation scenario is shown in Fig. 1. The target is located at
uo = [200, 100]T m and has a velocity of u̇o = [20, 10]T m/s. The
sonar system has M = 3 transmitters and N = 5 receivers, and
their positions are t1 = [500, 500]T m, t2 = [−300, 300]T m, t3 =
[−1000,−1000]T m, s1 = [−300, 1000]T m, s2 = [300,−100]T m,
s3 = [−1000, 300]T m, s4 = [600,−1000]T m and s5 = [−600,
−700]T m. The transmitters have carrier frequencies fc,1 = 10kHz,
fc,2 = 12kHz and fc,3 = 14kHz. The signal propagation speed
is 1500m/s. The covariance matrices of the time delay and arrival
angle measurements are Qr = σ2

rI and Qθ = σ2
θI. It is Qṙ =

105σ2
rdiag(1T /f2

c,1,1
T /f2

c,2,1
T /f2

c,3) for range rates.
We conduct Monte Carlo simulations of L = 104 ensemble runs

for the proposed solution, the method from [9] without using bearing
measurements and the two iterative algorithms from [14]. The local-
ization performance is evaluated by the mean square error (MSE):
MSE(a)=

∑L
k=1 ‖a

(k) − ao‖2/L. Fig. 2 summarizes the results for
position estimation as a function of σr and σθ . First, comparing with
the results from [9] reveals that incorporating the angle measure-
ments can significantly improve the positioning accuracy, especially
when the time delay and Doppler noise levels become large. Second,
the MSE of the proposed solution matches the CRB well. Third, the
iterative LS solution from [14] has poor performance by not account-
ing for the noise powers of different kinds of measurements. Before
the thresholding effect, the proposed method performs close to the
ML estimator from [14] that requires near triple the computing time
in MATLAB. Fig. 3 illustrates the velocity estimation performance.
It turns out the angle measurements do not have much impact on the
velocity estimate. This is expected because the angles depend on-
ly on the target and receiver positions, and the velocity information
mostly comes from Doppler shifts.

6. CONCLUSION

A closed-form solution was developed for multistatic sonar localiza-
tion of a moving target using time delay, Doppler shift and arrival
angle measurements. This highly nonlinear estimation problem is
solved by introducing nuisance variables and using successive pro-
cessing stages to refine the location estimate. We have shown an-
alytically and verified by simulations that the proposed solution is
able to reach the CRB accuracy, when the measurement noise is s-
mall compared to the true measurements and the target is not near to
any receiver. The angle measurements can significantly improve the
positioning accuracy but do not affect the velocity estimation much.
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