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ABSTRACT

We propose a method for designing phased-arrays according to a
given, analytically-specified, target beamshape. Building on the flex-
ibeam framework, antenna locations are sampled from a probabilis-
tic density function. Naturally scalable with the number of antennas,
it is also computationally efficient and numerically stable, as it relies
on analytical derivation.

We prove that, under mild conditions, the achieved beamshapes
converge uniformly to the target beamshapes as the number of an-
tennas increases. We illustrate the technique through a number of
examples. For instance, by use of the Laplace filter, beams with ex-
tremely fast decay away from the centre of focus are achieved.

Some macroscopic observations result. We observe that matched
beamforming weights may, for a given layout, achieve beamshapes
targeting regions, rather than isolated directions as commonly be-
lieved. Additionally, the convergence analysis can be used to fore-
cast the growth of future large phased arrays such as the Square
Kilometre Array (SKA).

Index Terms— Beamforming, array signal processing, array de-
sign, spatial filtering

1. INTRODUCTION

Beamforming combines networks of antennas or sensors coherently
so as to achieve a beamshape with desirable properties such as high
directivity, reduced side-lobes, and improved SNR [1, 2, 3, 4, 5].

It is often thought of as steering the array to focus on a particular
point. This, however, has a number of drawbacks. It cannot adjust
for small errors in direction of interest estimates, nor cope well with
moving devices. Additionally, often a region or regions is what is
desired, to scan the sky in radio astronomy or an organ in ultrasound.

As such, the flexibeam framework [6] was developed to, in a
data independent fashion, determine beamforming weights so as to
target a general spatial region. The framework takes as input fixed
antenna locations, and approximates the target beamshapes.

The present work, flexarray, takes the alternate view. The beam-
forming weights are of unit magnitude, and only altered to steer the
array in a certain direction. An optimal layout is determined by sam-
pling antenna locations from a probabilistic density function, that
itself is derived from the target filter.

As we will show, under mild conditions, the empirical beamshape
will converge uniformly to the target as the number of antennas
increases. The procedure is numerically stable, computationally
efficient and versatile, offering the analyst a very powerful tool
for designing beamshapes, as well as insight into how an array
will scale with ever increasing numbers of antennas. In contrast to
what is commonly thought, we observe that matched beamforming

weights can lead to beamshapes focused on a region rather than a
point.

As the beamforming weights all have unit modulus, this trans-
lates into a delay, allowing existing hardware to be used to achieve
a given beam, and has the advantage of treating noise uniformly
across antennas. In contrast, flexibeam modifies the magnitude of
the weights at the cost of non-uniform noise distribution, but with
the advantage of re-configurable beamshapes.

For simplicity in explanation, the paper considers circularly
symmetric filters and 2D beamforming.

1.1. Relation to prior work

Phased array layouts and beamforming weights are usually chosen
so as to minimise a certain objective function [7, 1] which is a linear
combination of conflicting metrics, capturing some key beamshape
properties: directivity, side-lobe level, main-lobe beam-width and/or
signal-to-noise ratio [8, 7, 1]. For example, the Dolph-Chebyshev
design [1] has been shown to achieve the narrowest beam-width for
a given sidelobe level. Such design techniques were originally re-
stricted to regular arrays [1, 9], and have recently been extended to
irregular, hierarchical or sparse arrays [7, 10], more cost efficient
layouts for very large arrays. Sometimes, phased arrays are also
optimised for the very specific application for which they are be-
ing used. For example in radio astronomy, various layouts (T-shape,
Y-shape, Reuleaux triangle,...) have been proposed to optimise the
point spread function of the telescope [11, 10].

The work presented here has a radically different take on the
design problem. We directly specify the radiation patterns analyti-
cally, permitting us to control much more precisely its shape. Flex-
ibeam [6] achieved this, for a fixed layout, through modulation of
both the phase and amplitude of the beamforming weights. In con-
trast, flexarray optimises the layout while using weights of unit am-
plitude, hence avoiding non-uniform noise perturbation.

2. PRELIMINARIES

For simplicity, we concentrate on beamforming from the receive per-
spective, but the quantities and methods presented in the subsequent
sections remain valid in the transmit case.

2.1. Beamforming

Consider an array of N receiving antennas, which, without loss of
generality, have unit gains and an omni-directional field of view.
Beamforming in mathematical terms translates into a linear com-
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bination of the antenna signals xi(t):

y(t) =

N∑
i=1

w
∗
i xi(t), (1)

where wi ∈ C are beamforming coefficients.
Under the non-limiting assumptions of far-field and narrowband

signals,

y(t) =

∫ 2π

0

s(t, θ)b
∗
(θ)dθ +

N∑
i=1

w
∗
i ni(t). (2)

The function b(θ) =
∑N
i=1 wie

j2πpi cos(θ−φi) is called the beamshape
of the beamformed antenna array. It describes the sensitivity of the
antenna array relative to various directions θ, and hence acts as an
angular filter.

2.2. Beamforming with Flexibeam

Recently, a new framework called flexibeam was proposed in [12],
permitting to achieve a wide range of such analytically-specified
beamshapes. In this section we briefly recall some important no-
tions and notations borrowed from this framework. Flexibeam’s
main departure from the state of the art was to consider a notional
continuous field of antennas, with an associated beamforming func-
tion ω : R2 → C, describing the gains and delays to be applied at
each location (p, φ) ∈ R+ × [0, 2π] so as to achieve an analytically
specified target beamshape ω̂ : [0, 2π]→ C :

ω̂(θ) =

∫ ∞
0

∫ 2π

0

ω(p, φ) e
j2πp cos(θ−φ)

p dφ dp. (3)

The beamforming function can be computed as

ω(p, φ) =

∫ ∞
0

∫ 2π

0

ω̂e(r, θ) e
−j2πrp cos(θ−φ)

r dθ dr (4)

where ω̂e : R2 → C is called the extended filter, and such that
ω̂e(1, θ) = ω̂(θ). For N given antenna locations, the corresponding
beamforming weights wi ∈ C are then obtained by sampling ω

wi =
ω(pi, φi)

β
, i = 1, . . . N,

where β is a normalising constant to avoid noise magnification. The
resulting beamshape then approximates the target beamshape, with
accuracy dependant on the specific layout under consideration.

3. FLEXARRAY

In this section, we propose a framework called flexarray to gener-
ate random layouts so as to approximate analytically-specified target
beamshapes. To do so, we leverage the flexibeam framework and
construct a probability density function from the beamforming func-
tion. In the specific case of circularly symmetric extended filters, we
link this density function to the Hankel transform of order zero of the
extended filter. We finally show that the empirical beamshapes ob-
tained when sampling this density converge uniformly almost surely
to the target beamshape as the number of antennas grows to infinity.
The rate of convergence is assessed through simulation.

3.1. Beamforming with Circularly Symmetric Extended Filters

This paper is concerned with extended filters that are real and, when
translated to the origin, circularly symmetric, namely:

ω̂e(r) = ĝ(‖r − r0‖), ∀r ∈ R2
,

where ĝ is a function defined over R+, and r0 = (cos θ0, sin θ0) ∈
S1 is the focus direction. Eq. (4) shows that the beamforming func-
tion is the 2D Fourier transform of the target filter. Leveraging the
shift property, we can hence express the beamforming function in
terms of the zeroth order Hankel transform of ĝ:

ω(p, φ) = e
−j2πp cos(φ−θ0)

∫ ∞
0

∫ 2π

0
rĝ(r)e

−j2πrp cos(θ−φ)
dθdr

= e
−j2πp cos(φ−θ0)

[
2π

∫ ∞
0

rĝ(r)J0(2πrp)dr

]
= e
−j2πp cos(φ−θ0)g(p), (5)

where J0 is the zeroth order Bessel function of the first kind. Then,

g(p) = 2π

∫ ∞
0

rĝ(r)J0(2πrp)dr, (6)

which is the Hankel transform of order zero of ĝ.

3.2. Beamforming in a Probabilistic Setup

Assuming that the flexibeam beamforming function ω ∈ L1(R2
), its

relationship to the target beamshape from Eq. (4) can be re-written
using Eq. (5), as

ω̂(θ) =

∫ ∞
0

∫ 2π

0

[
e
−j2πp cos(φ−θ0)g(p)

]
e
j2πp cos(θ−φ)

p dφ dp

=

∫ ∞
0

∫ 2π

0

‖g‖1 σg(p) e
−j2πp cos(φ−θ0) · · ·

· · · ej2πp cos(θ−φ)
fb(p, φ)p dφ dp, (7)

where ‖g‖1 =
∫∞
0
|g(p)|dp and σg(p) = sign(g(p)). Now, fb is a

probability density function, which we call the beamforming density
function, and in polar coordinates is defined as

fb(p, φ) =
|g(p)|
‖g‖1

, ∀p ∈ R+. (8)

Let P : Ω → R2 be a random vector with polar coordinates (P,Φ)
and probability density function fb. Eq. (7) is then

ω̂(r) = αEP

[
σg(‖P ‖)e

−j2π〈r0,P 〉 e
j2π〈r,P 〉

]
, ∀r ∈ S1

,

(9)
with α = ‖g‖1, r0 = (cos θ0, sin θ0) and 〈·, ·〉 the Cartesian inner
product. An expression for the extended filter ω̂e follows directly by
extending Eq. (9) to R2:

ω̂e(r) = αEP

[
σg(‖P ‖)e

−j2π〈r0,P 〉 e
j2π〈r,P 〉

]
, ∀r ∈ R2

.

(10)
Notice that when α = 1 and g ≥ 0, this can be seen as the Fourier
transform of the density function fb, modulated by an exponential
e
−j2π〈r0,P 〉. Leveraging the shifting property of the Fourier trans-

form, we finally get

ω̂e(r + r0) = EP

[
e
j2π〈r,P 〉

]
:= ϕP (r), ∀r ∈ R2

,
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which is the characteristic function ϕP : R2 → C of the random
vector P .

In conclusion, in the specific case where α = 1 and g ≥ 0, the
extended filter ω̂e can be seen as the characteristic function of the
random vector P , centred around r0 ∈ S1

, the steering direction.
Similarly, the target beamshape ω̂ can be seen as the characteristic
function of the random vector P , centred around r0 ∈ S1

, and eval-
uated on the circle.

3.3. Empirical Beamshapes and Asymptotic Convergence

Assume that for a target beamshape ω̂, with circularly symmetric
extended filter ω̂e, we computed the density beamforming function
fb as described in Section 3.2, and sampled N independent polar
coordinates from this density

{(pi, φi)}i=1,...,N
i.i.d.∼ fb.

If we place antennas at these random locations, and impose beam-
forming weights wi for each antenna, the resulting array will have a
beamshape given by

bN (θ) =

N∑
i=1

wie
j2πpi cos(θ−φi), ∀θ ∈ [0, 2π].

Choosing the beamforming weights wi as

wi =
α

N
σg(pi)e

−j2πpi cos(φi−θ0), i = 1, . . . , N, (11)

leads to the empirical beamshape, finite-sample version of Eq. (9):

bN (θ) =
α

N

N∑
i=1

σg(pi)e
−j2πpi cos(φi−θ0)e

j2πpi cos(θ−φi).

Notice that, since the density beamforming function fb is indepen-
dent of the steering direction r0 = [cos(θ0), sin(θ0)], the layout
of the array does not need to be changed in order to re-focus the
beamshape towards another direction. For this, it is sufficient to up-
date the beamforming weights in Eq. (11) with a new focus θ0.

Observe moreover that when σg = 1, the beamforming weights
wi in Eq. (11) are simply matched beamforming weights, which
steer the beamshape around θ0. The empirical beamshape is an un-
biased estimate of the target beamshape ω̂. Moreover, depending on
the function g, this estimate can also be shown to be consistent. This
follows from the uniform strong law of large numbers [13]:

Theorem 1 (Asymptotic Convergence of the Empirical beamshape).
Assume an array formed by N antennas placed at locations Pi ∈
R2
, with polar coordinates (pi, φi) randomly drawn from the den-

sity beamforming function fb. Write further the resulting empirical
beamshape of the array as

bN (θ) =
1

N

N∑
i=1

ψ(Pi, θ),

where

ψ(Pi, θ) := ασg(pi)e
−j2πpi cos(φi−θ0)e

j2πpi cos(θ−φi).

Then, if the function ψ(·, θ) is continuous and measurable for all
θ ∈ [0, 2π]

supθ∈[0,2π]
∥∥∥bN (θ)− ω̂(θ)

∥∥∥
2

a.s.→ 0,

as the number of antennas N grows to infinity.

(a) Average beamshape with the num-
ber of antennas for the Gaussian
beamshape.
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‖
∞
)
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Error Laplace
Error Gaussian
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Slope ≃ −1

(b) Uniform error between the em-
pirical beamshape and the target
beamshape. Averaged over 10 exper-
iments.

Fig. 1: Convergence analysis of the empirical beamshape to the tar-
get as the number of antennas increases for the 4 examples investi-
gated in Section 4.

A study of the function ψ reveals that a sufficient condition for
bN to be a consistent estimate of ω̂ is for the function g to be either
strictly positive or strictly negative. For functions g that switch signs,
we can still use the classical strong law of large numbers to show
point-wise convergence. The empirical beamshapes for the Laplace,
Sombrero and Gaussian functions, investigated in Section 4, con-
verge extremely quickly, approximately as 1/N (see Fig. 1).

4. IMPORTANT LAYOUT DISTRIBUTIONS

We first discuss the traditional case, targeting one individual point,
before the case of targeting whole regions. Following the frame-
work, for a given target ω̂(θ), we need to design an extended fil-
ter ω̂e(r, θ) defined on the whole plane, and determine an appropri-
ate distribution fb for achieving the target. The derived beamform-
ing density functions are a consequence of known Hankel transform
pairs (see Section 3.2).

4.1. Focusing on a single point

To target a single direction θ0,the most obvious extended filter is
ω̂e(r, θ) = δ(θ − θ0)δ(r − 1). The resulting beamforming func-
tion is ω(p, φ) = e

j2πp cos(θ0−φ). This has unbounded support, and
thus no beamforming density function exists. In practise, we have to
sample over a finite disc, which is effectively achieved by an array
that targets matched beamforming.

4.1.1. Sombrero

Consider the following ĝ, the Sombrero function,

ĝ(r) = σ
J1
(
2π r

σ

)
r

,

where σ > 0. The beamforming density function is then, up to
rescaling, a uniform distribution over the disc of radius 1/σ:

fb(p, φ) ∝

{
1 if p ≤ 1/σ

0 otherwise
.

From this we can conclude that for matched beamforming, a
uniformly distributed array across a given area will get us close to the
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Sombrero function, which as the array diameter increases, converges
to a Dirac. This observation has been made empirically in the past,
and implemented as such in large arrays such as LOFAR.

4.1.2. Radial Laplace

Instead of trying to approximate a Dirac, it may be wiser to target a
better behaved function, with an explicit control on the beamshape
decay around the focus point θ0. This is achieved by the radial
Laplace function: ĝ(r) = e

− r
σ where σ > 0. The beamforming

density function is then, up to a rescaling function,

fb(p, φ) ∝ 1(
1 + 4π

2
σ
2
p
2
) 3

2

.

Example Sombrero and radial Laplace beamshapes are shown
in Figs. 2a and 2b. The Laplace beamshape has almost no side-
lobes, with its energy focused around the point of interest. In [14]
we used this beamshape for the purpose of imaging by beamform-
ing. By trading spatial resolution for smoother sidelobes, we could
obtain an artifact-free image that is much easier to process.

4.2. Targeting regions

Flexibeam [6] presented two extended filters to target regions, the
ball indicator function and the circularly symmetric Gaussian func-
tion. We now present the beamforming density functions associated
to both these filters.

4.2.1. Ball Indicator

Consider the following disc of radius R:

ĝ(r) =

{
1, r ≤ R
0, otherwise

.

The beamforming density function is then, up to a rescaling function,

fb(p, φ) ∝ |J1(2πRp)|
p

.

It is interesting to note that, due to the Hankel pair relationship,
approximating a region with the ball achieves a Sombrero beam-
forming density, while approximating a Sombrero requires a uniform
density in a disc.

4.2.2. Bi-dimensional Gaussian

An alternative way to cover a region is to use a bi-dimensional Gaus-
sian filter:

ĝ(r) =
1

2πσ
2 e
− r

2

2σ
2 ,

where σ > 0. The beamforming density function is then given by,
up to a rescaling function

fb(p, φ) ∝ e−2π
2
σ
2
p
2

.

Example ball indicator and Gaussian beamshapes are shown
in Figs. 2c and 2d. The discontinuity of the ball indicator function
breaks the requirements for Theorem 1 to be applicable. Hence,
the beamshape demonstrates a significant side-lobe structure, also
known as the Gibbs phenomenon. In contrast, the Gaussian is very
smooth but does not isolate the portion of interest as well.

(a) Sombrero.

(b) Radial Laplace.

(c) Ball Indicator.

(d) Bi-dimensional Gaussian.

Fig. 2: Example beamshapes and layouts from their associated den-
sity. Left: target/extended filters, Middle: beamforming density
function and random array layout, Right: empirical beamshape and
extended filter.

We investigated the use of the Gaussian beamshape in [15], for
the purpose of surveying large portions of the sky in radio astron-
omy. The resulting beamshape exhibited substantially more energy
concentration within the region-of-interest than the state-of-the-art.

5. CONCLUSIONS

We noticed flexibeam, although powerful, gave no hints on where to
place antennas. We thus brought the problem of antenna positioning
into the framework by interpreting in a probabilistic setup, hence
preserving the analytical scalable nature of the problem statement.

This led to a proof on the beamshape convergence, whose rate
was further shown empirically to be as fast as 1/N . We show that
matched beamforming weights used with inadequately designed lay-
outs yield beamshapes far from targeting a single point. Indeed, used
judiciously, those same weights can result in a sharply decaying nar-
row beamshape.

Future work includes a joint optimisation in both layout and
beamforming weight, bridging flexarray and flexibeam, as well as
extending the framework to 3D beamforming.
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