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ABSTRACT

An effective method is proposed to estimate the desired-signal (S)
subspace by the intersection between the signal-plus-interference
(SI) subspace and a reference space covering the angular region
where the desired signal is located. The estimated S subspace is
robust to steering vector mismatch and overestimation of the SI
subspace, capable of detecting the relative strength of the desired
signal. And even the basis of the estimated S subspace can serve as
an effective estimation of the steering vector of the desired signal.
With these properties, the estimated S subspace can help to select a
more accurate narrow area for searching for the steering vector of the
desired signal in mismatch cases. The proposed method is applied
for robust adaptive beamforming with an improved performance, as
demonstrated by simulation results.

Index Terms— Eigenspace, intersection, robust adaptive beam-
forming (RAB), steering vector estimation.

1. INTRODUCTION

Adaptive beamforming is one of the most important research areas
in array signal processing and has found many applications such as
wireless communications, radar, sonar, speech processing, medical
imaging, and radio astronomy [1–3]. Among the various state-of-
the-art beamformers, the minimum variance distortionless response
(MVDR) based beamformer [4] has received tremendous attention,
and many MVDR-based robust beamformers were developed to im-
prove their performance under array manifold errors and steering
vector mismatches [5–7].

Based on the analytical solution to the traditional MVDR opti-
mization problem, there are mainly two approaches for improving
the robustness of the system. One approach is to estimate the
interference-plus-noise matrix using prior knowledge such as ar-
ray calibration and the angular sector where the desired signal is
located [8, 9]. The other one is to estimate the steering vector of
the desired signal, with the eigenspace-based beamformer being a
representative example, applicable to the arbitrary steering vector
mismatch case [10]. However, one issue with the eigenspace-based
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beamformer is subspace swap in low-SNR scenarios. An enhanced
eigenspace-based beamformer named vector space projection (VSP)
beamformer was proposed to combat pointing error by estimating
the steering vector as well as the power of signal of interest (SOI),
by assuming the number of interferences is known [13]. However,
the VSP method cannot realize the intended intersection effectively
and therefore only gives a very rough estimation of the steering
vector of SOI. Another two examples for the latter approach are
the optimization-based beamformers proposed in [11, 12]: one is
called sequential-quadratic-programming-based (SQP) beamformer
and the other one is called least-prior-knowledge-based (LP) beam-
former. They adopt an orthogonal projector onto a reference space,
which is supposed to distinguish the angular region of the desired
signal, to limit the search of the desired steering vector around the
SOI. In detail, the SQP beamformer aims to estimate the steering
vector of SOI directly from the reference space by correcting the
presumed steering vector with its orthogonal component, while by
relaxing the strict limitation that the estimated steering vector of
SOI belongs to the reference space, the LP beamformer gets more
degrees of freedom (DOFs) and outperforms the SQP beamformer.
Compared with the eigenspace-based beamformer, the SQP/LP
beamformer relies on the reference space to have a rough separa-
tion between the SOI and the interferences. On the other hand, the
eigenspace-based beamformer tries to extract the whole signal plus
interference (SI) subspace instead of separating them.

In this work, we combine the approaches of both the SQP/LP
beamformer and the eigenspace-based beamfomer and propose an
intersection method to achieve a more accurate estimation of the
desired-signal (S) subspace, so that the robustness of the beamformer
can be enhanced. The key idea of this paper is to realise that the S
subspace must lies in both the reference space discussed in [11, 12],
and the SI subspace used in the eigenspace-based beamformer. the
basis of the estimated S subspace by considering the intersection of
both spaces can serve as an effective estimation of the desired steer-
ing vector. This newly estimated S subspace is robust to steering
vector mismatch and overestimation of the SI subspace, capable of
detecting the relative strength of the SOI. Modified versions of the
SQP beamformer, the LP beamformer, and the MVDR beamformer
are obtained by adopting the newly estimated S subspace, as shown
by simulation results, all of them have achieved an improved perfor-
mance compared to the original versions.
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This paper is structured as follows. Some background of
MVDR-based beamforming is presented in Section 2. The theorems
and properties of the estimated S subspace is discussed in Section 3.
In Section 4, simulation results are provided to show the properties
of the estimated S subspace and the performance improvements of
several existing beamformers modified by the estimated S subspace.
Conclusions are drawn in Section 5.

2. BACKGROUND

Consider a narrowband linear array of M sensors. The M × 1
complex observation vector at time k can be modeled as x (k) =
s (k) + i (k) + n (k), where s (k) = s (k)a, i(k) and n(k) are the
statistically uncorrelated components of the desired signal, interfer-
ence and noise, respectively, s(k) is the desired signal waveform,
and a is its steering vector.

Applying the complex weight vector w = [w1, ..., wM ]T ∈
CM to x(k), we obtain the beamformer output y(k) = wHx (k).
The beamformer output signal-to-interference-plus-noise ratio (SINR)
is defined as

SINR =
σ2
s

∣∣wHa
∣∣2

wHRi+nw
, (1)

where σ2
s is the power of desired signal, Ri+n is the interfer-

ence plus noise covariance (INC) matrix. Minimizing the output
interference-plus-noise power subject to a distortionless response
toward the desired signal leads to the following optimization prob-
lem

min
w

wHRi+nw subject to wHa = 1, (2)

the solution is given by:

wopt =
R−1

i+na

aHR−1
i+na

. (3)

We can replace Ri+n by the covariance matrix R of x(k),
which leads to the classic MVDR beamformer, with the same opti-
mum solution. In practice, the exact INC matrix Ri+n (or R) and
the actual steering vector a are unavailable. Therefore, the sample
covariance matrix Rx = 1

K

∑K
k=1 x(k)x

H(k) and the presumed
steering vector ap are used instead. Here, K is the number of data
snapshots. In this case, equation (3) changes to

wx =
R−1

x ap

aH
p R−1

x ap

, (4)

which is often referred to as the MVDR-SMI (sample matrix inver-
sion) beamformer.

3. DESIRED-SIGNAL (S) SUBSPACE ESTIMATION

As we know, the SI subspace is spanned by the steering vectors of the
SOI and the interferences. Given a reference space which contains
the steering vectors for an angular sector where only the SOI is lo-
cated, the intersection between the SI subspace and such a reference
space will generally result to a more accurate estimation of the S
subspace, which is spanned by the steering vector of SOI only. Em-
ploying the orthogonal projector onto the S subspace, we can obtain
a new criterion for determining how close a steering vector is located
to the steering vector of SOI. This will contribute to the choice of the

feasible region in all kinds of optimization problems for modifying
the presumed steering vector.

In practice, for the traditional eigenspace-based beamformer, we
estimate the SI subspace by KR dominant eigenvectors of Rx. The
value of KR can be found as follows: let {si}Mi=1 denote the set of
eigenvalues of Rx, sorted in descending order; then KR is chosen as
the i which maximizes si−1/si, with i starting from 2. To estimate
the required reference space, the method used in [11,12] is adopted:
let C =

∫
Θ
d (θ)dH (θ) dθ (d(θ) is the steering vector of direction

θ and it relates to the sensor array geometry); then the KC dominant
eigenvectors of C are selected to span the reference space. KC is
only related to the array geometry and can be set in advance if the
array geometry is known. For example, for an angular sector with
10◦ width (around the broadside), KC = 3 is tested to be a good
choice in a 10-sensor half-wavelength-spaced uniform linear array
(ULA).

The estimated SI subspace and the estimated reference space
are denoted by ΩR and ΩC , respectively. Let ΩR = span{B} and
ΩC = span{D}, where B and D are a collection of orthogonal
bases of ΩR and ΩC , respectively. Although it is relatively easy to
obtain ΩC and ΩR through the two matrices C and Rx, there is no
clear path for obtaining the intersection ΩC ∩ΩR of the two matri-
ces [14,15], not to mention the orthogonal projection onto ΩC∩ΩR.

In the following, by analyzing the inter-projection DDHBBH ,
we provide an approximate solution to the problem of obtaining the
orthogonal projector onto the space ΩC ∩ΩR. First, considering the
following theorem:

Theorem 1: BBH lim
n→∞

Pnx (P = DDHBBH ) approximates

the orthogonal projector onto ΩC ∩ΩR.
Proof : Assume ΩC = span{D} ⊂ Ω and ΩR = span{B} ⊂

Ω. For ∀x ∈ Ω, x can be orthogonally decomposed into

x = x∥ + x⊥, (5)

where x∥ ∈ ΩC ∩ΩR and x⊥⊥ΩC ∩ΩR. Let P = DDHBBH ,
then,

Px∥ = x∥. (6)

Px⊥ is the orthogonal projection of BBHx⊥ onto ΩC and
BBHx⊥ is the orthogonal projection of x⊥ onto ΩR. So ∃d1, d2
(d1, d2 ≥ 0), ∥Px⊥∥2 + d21 = ∥BBHx⊥∥2 and ∥BBHx⊥∥2 +
d22 = ∥x⊥∥2, that is ∥Px⊥∥2 + d21 + d22 = ∥x⊥∥2. Therefore

∥Px⊥∥ ≤ ∥x⊥∥. (7)

Note the equality holds only when x⊥ is a zero vector.
Additionally, since x⊥⊥ΩC ∩ΩR, ∀ς ∈ ΩC ∩ΩR,

(Px⊥)
Hς = x⊥

HPHς = x⊥
Hς = 0, (8)

we have Px⊥⊥ΩC ∩ ΩR, and so does Pnx⊥⊥ΩC ∩ ΩR (n is a
non-negative integer). According to (7), suppose x⊥ is not zero, we
obtain

∥Pnx⊥∥ < · · · < ∥Px⊥∥ < ∥x⊥∥. (9)

There must exist a positive set εi < 1, i = 2, . . . , n to satisfy

∥Pix⊥∥ = εi−1∥Pi−1x⊥∥. (10)

While ∥Pnx⊥∥ = ∥Px⊥∥ε1 · ε2 · · · · · εn−1 < ∥Px⊥∥ ·
maxn{εi} → 0, n → ∞, we obtain

lim
n→∞

Pnx = lim
n→∞

Pnx∥ + 0 = x∥. (11)
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Fig. 1. Simulation I: (a) the norm of dH(θ)P̃d(θ) versus θ under different θs; (b) the norm of dH(θ)P̃d(θ) versus θ with different KR; (c)
Tr(P̃10) versus SNR with different KR.

Therefore, for ∀x ∈ Ω, lim
n→∞

Pnx will remain the part of x in

ΩC ∩ ΩR, and exclude the part orthogonal to ΩC ∩ ΩR, so does
BBH lim

n→∞
Pnx. Denote BBHPn as P̃n. It is clear that P̃∞ is

Hermitian. And in the limit of infinity, P̃2
∞ = P̃∞. In conclusion,

P̃∞ is the orthogonal projector onto ΩC ∩ΩR.
This completes the proof.
In practice, it is impossible to calculate P̃∞ and we have to con-

sider a finite number of inter-projections. Since the S subspace is
one-dimensional, we use the eigenvector corresponding to the largest
eigenvalue of P̃n (n < ∞), p, to span the estimated S subspace, and
the orthogonal projector onto the estimated S subspace is P̃ = ppH

instead of P̃∞. Note that
√
Mp/∥p∥ can serve as a rough estima-

tion of the steering vector of SOI. In our simulations, P̃10 is used for
a good enough approximation.

There are three properties for the estimated S subspace.
Property 1: robustness to steering vector mismatch, i.e. ability

to track the SOI.
∀d ∈ Ω, the projection P̃d only contains the part of d which

is in ΩC ∩ ΩR. So the norm of the projection ∥P̃d∥ gets larger
when more part of d is included in the S subspace, which takes place
when d gets closer to the steering vector of SOI. In particular, when
only look direction mismatch error exists, the value of ∥P̃d(θ)∥ will
provide a measurement about how close a given θ is to θs.

Property 2: providing a measurement of the strength of SOI.
Due to the subspace swap problem, estimation of the SI sub-

space ΩR may not be accurate when the SOI is weak. In this case,
the steering vector of SOI will not be in ΩR, and ΩC ∩ ΩR will
be a null in theory. According to this, a threshold value can be set
for Tr(P̃n) (n < ∞) to determine whether the steering vector of
SOI is in ΩC ∩ΩR or not, which implies whether the SOI is strong
enough or not. There are some robust adaptive beamforming (RAB)
techniques especially suitable for low signal-to-noise ratio (SNR) or
high SNR cases. So this property can serve as a trigger to switch
between RAB techniques for low-SNR case and those for high-SNR
case.

Property 3: robustness to overestimated SI subspace.
When KR is overestimated, the information of noise subspace

will be included in the estimated SI subspace ΩR. However, the
noise subspace has much less overlap with the reference space (no

overlap at all in theory) than that of the real SI subspace with the
reference space. So the operation ΩC ∩ΩR will effectively remove
the overestimated noise subspace and still result to a good estimation
of the S subspace.

4. SIMULATION RESULTS

In all simulations, a ULA of 10 omnidirectional sensors with half
wavelength inter-element spacing is employed. Additive noise at the
sensors is modeled as spatially and temporally white complex Gaus-
sian noise with zero mean and unit variance. Two interfering signals
arrive from the directions 30◦ and 50◦, respectively, both with an
interference-to-noise ratio (INR) of 30dB at each sensor. The pre-
sumed DOA angle of SOI is θp = 3◦ unless otherwise specified. Θ
is set to be [θp − 5◦, θp + 5◦]. In the proposed estimation of the
S subspace, KR is chosen adaptively, unless otherwise specified, as
described in the second paragraph of Section II, KC = 3 is set in
advance and the projector P̃ is obtained by the dominant eigenvec-
tors of P̃10. Two sets of simulations are provided. In the first set, the
three properties of the estimated S subspace by the proposed method
are verified; in the second set, the estimated S subspace is applied to
existing robust beamforming methods to show the improved perfor-
mance in the presence of signal-look-direction mismatch errors and
sensor position errors.

4.1. Simulation 1: Demonstrate the Three Properties

The number of data samples K = 30, SNR is 20dB, and θs is set
at −1◦, 1◦, 3◦, 5◦, and 7◦, respectively. Fig. 1a shows the norm
of dH(θ)P̃d(θ) versus θ under different θs. It can be seen that
with different levels of SOI-look-direction mismatch, the norm of
dH(θ)P̃d(θ) always reaches its maximum value around the actual
DOA, tracking the SOI direction successfully.

Now we set θs = 7◦, and KR to be 3, 5, 8, respectively. Fig. 1b
shows the norm of dH(θ)P̃d(θ) versus θ under different KR. As
shown, even when KR is overestimated, the norm of dH(θ)P̃d(θ)
almost remains the same, again demonstrating the robustness of the
estimated S subspace for an overestimated KR.

Then, KR is changed from 1 to 10 and Fig. 1c shows the value
of Tr(P̃10) versus the input SNR with different KR. As can be
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Fig. 2. Simulation II: (a) output SINR versus the number of snapshots K for fixed SNR=30dB; (b) output SINR versus SNR for the number
of snapshots K=30 and adaptively chosen KR; (c) output SINR versus SNR for number of snapshots K=30 and an overestimated KR = 6.

seen, when KR = 1, 2, which means the estimated ΩR misses one
or two incoming signals, Tr(P̃10) turns large when the SNR is over
30dB, i.e. the SOI is stronger than the interferences. When KR =
3, 4, 5, 6, which means the ΩR contains all the incoming signals and
may be overestimated, there is a clear ramp from 0 to 1 between
SNR=-20dB and SNR=0dB. If a threshold is set at 0.5, the possible
SOI with SNR more than -10dB can be identified for all KR from 3
to 6, which is consistent with Property 2, and together with the result
in Fig. 1b, we can see its robustness to an overestimated KR. For
KR = 7, 8, 9, 10, ΩR is overestimated too much and it becomes
very difficult to estimate the power level of SOI from Tr(P̃10).

4.2. Simulation 2: Improved Performance for Existing Steering-
Vector-Estimation-Based Beamformers

In this part, the SQP beamformer [11], the LP beamformer [12],
and the MVDR-SMI beamformer in (4) are modified by employ-
ing the proposed estimation of the S subspace as follows: when
Tr(P̃10) is over 0.5, the first constraint in the optimization prob-
lem of SQP beamformer (equation (15) in [11]) is replaced by∥∥∥(I− P̃)(ap + e)

∥∥∥ <
√
0.3 (where ap corresponds to the p

in [11]; and the edge value 0.3 is a rough choice to bound the feasible
area, the same below) to obtain the modified SQP beamformer; the
second constraints in the optimization problem of LP beamformer
(equation (39) in [12]) is replaced by Tr((I− P̃)A) < 0.3 to obtain
the modified LP beamformer; and ap is replaced by

√
Mp/∥p∥

in (4) to obtain the steering-vector-estimation-based (SVe) MVDR-
SMI beamformer. The worst-case-based (WCB) beamformer in [16]
with ϵ = 0.3M and the VSP beamformer in [13] with expected
pointing errors of 4◦ are also simulated for comparison. The relax-
ing value as defined in the original paper [11] is set as δ = 0.1 and
KC = 3 dominant eigenvectors of C are used for the SQP beam-
former. In simulations, the direction mismatch error is assumed
to be randomly and uniformly distributed in [−4◦, 4◦] for both the
SOI and the interferences, each sensor is assumed to be randomly
displaced from the original location and the displacement is drawn
uniformly from the set [−0.05, 0.05] measured in wavelength. For
obtaining each point in the curves, 500 independent runs are per-
formed. Here the random DOAs and sensor locations change from
run to run but remain fixed from snapshot to snapshot.

In Fig. 2a, the mean output SINRs for the WCB beamformer,
the original and modified versions of the SQP beamformer, the LP
beamformer and the MVDR beamformer are provided versus the
number of training snapshots for fixed SNR=30dB, with Fig. 2b
showing the mean output SINRs of the same methods versus the in-
put SNR for fixed data size K = 30. It is clear that SNR=−10dB
serves as a boundary: on its left, the modified beamformers have
the same performance as their corresponding original versions; on
its right, the modified beamformers outperforms their counterparts
in terms of output SINR. This boundary shows the effectiveness of
Property 2 and the improvement in performance is mainly due to the
proposed narrower but more accurate feasible region (Property 1)
which is focused on the SOI and thus prevents the estimated steering
vector converging to a less effective local optimal solution.

To further demonstrate its robustness to an overestimated SI sub-
space, in the next simulation, we choose a large KR = 6. Fig. 2c
gives the mean output SINR of all the aforementioned beamform-
ers versus the input SNR for a fixed data size K = 30. Compared
with Fig. 2b, in the new figure, except for the SVe MVDR-SMI
beamformer (whose performance has degraded but still comparable
to the SQP beamformer), the other modified beamformers maintain
roughly the same performance with the overestimated KR. The de-
cline in the performance of SVe MVDR-SMI beamformer is due to
distortion in the estimated S subspace caused by the overestimated
KR, as shown in Fig. 1b. The distortion is small but the MVDR-
based beamformer is sensitive to it, especially when SNR is large.

5. CONCLUSION

An intersection method has been proposed for more effective esti-
mation of the S subspace. The new estimation is robust to steering
vector mismatch and overestimation of the SI subspace, capable of
detecting the relative strength of the desired signal. With these prop-
erties, the estimated S subspace can be used to reduce the steering
vector mismatch error of the desired signal, which in turn leads to
improved beamforming performance for several representative RAB
methods, as verified by simulation results.
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