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ABSTRACT

This paper proposes a robust fusion-based strategy to detect changes
between two multi-band optical images with different spatial and
spectral resolutions, e.g., a multispectral high spatial resolution im-
age and a hyperspectral low spatial resolution image. The dissimi-
larity between sensor resolutions makes the change detection prob-
lem challenging, which has been generally bypassed in the literature:
most often, the two images are crudely and independently resampled
in order to get the same spatial and spectral resolutions and finally,
classical change detection methods are applied. However, the resam-
pling operation tends to lose information. In this paper, we propose
a method that more effectively uses the available information: the
two observed images are respectively modeled as spatial and spec-
tral degradations of two latent images characterized by the same high
spatial and high spectral resolutions. Representing the same scene,
these latent images are expected to be globally similar except for
possible changes in sparse spatial locations. Change detection is then
envisioned through the solution of an inverse problem, shown to be a
specific instance of multi-band image fusion. The proposed method
is applied to real images with simulated realistic changes. A com-
parison with state-of-the-art change detection methods evidences the
proposed method superiority.

Index Terms— change detection, hyperspectral, multispectral,
resolution, optical images, heterogeneous sensors.

1. INTRODUCTION

Change detection (CD) is one of the most important issues in re-
mote sensing. From long term monitoring to disaster management,
change detection has innumerable applications [1]. CD compares
the information collected from two or more multi-date images of
the same geographical spot [2]. The scenario involving two im-
ages acquired through the same kind of sensors is the most favor-
able [3, 4]. However, current remote sensing imagery exploits many
different kinds of sensors that provide, under different conditions of
use, complementary information about the observed scene. More-
over, in some emergency situations such as natural disasters, it is not
feasible, within a reasonable timeframe, to acquire new images of
the same modality as that of already available ones. The need for
flexibility and robustness against the diversity of image modalities
motivates the investigation for new CD strategies.

Part of this work has been supported by Coordenação de Aperfeiçoa-
mento de Ensino Superior (CAPES), Brazil, and EU FP7 through the ER-
ANETMED JC-WATER Program, MapInvPlnt Project ANR-15-NMED-
0002-02.

Optical images represent the most common remote sensing im-
age modality [3, 4]. Currently appointed as multi-band optical im-
ages, they can be categorized according to their spatial and spectral
resolutions [2]. The modalities referred to as panchromatic (PAN),
multispectral (MS) and hyperspectral (HS) constitute a spectral clas-
sification of multi-band optical images according to an increasing
number of spectral bands (respectively one, a dozen and hundreds)
and consequently a decreasing spectral resolution. Considering the
spatial dimension, images are qualified as high resolution (HR) or
low resolution (LR) according to the size of the smallest object their
constitutive pixels can represent.

The most common CD technique for optical single band images
is based on image differencing following the assumptions of an ad-
ditive Gaussian sensor noise and of identical spatial and spectral res-
olutions [4]. CD methods have been adapted to address the problem
of optical images with increasing number of spectral bands. For
instance, spectral change vector [5] and transform analysis [6, 7] al-
low the change information through all bands to be exploited. The
approach proposed in [6] permits to deal with images of different
spectral resolutions but still requires identical spatial resolutions.

This paper proposes a CD method able to deal with images of
both dissimilar spatial and spectral resolutions. Typically, the two
observed multi-band optical images are respectively a HR-MS (or
HR-PAN) image and a LR-HS image. Each observed image can
be considered as a spatial or spectral degradation of an unknown
HR-HS latent image, where the term degradation here refers to the
operation leading to the resolution decrease. The two latent images
are characterized by the same spectral and spatial (high) resolutions.
As they represent the same geographical location, they are expected
to be characterized by a high degree of similarity. More precisely,
changes in the scene are supposed to affect only specific and sparse
spatial locations. Since the latent images have the same resolutions,
it is now possible to build a so-called change vector. CD is then
expressed as an inverse problem related to image fusion and solved
within a Bayesian framework which allows one of the latent images
and the change vector to be jointly inferred. The other latent image
can be finally estimated as well as the changes.

This paper is organized as follows. Section 2 formulates the CD
problem as a robust fusion task. In Section 3, the proposed fusion-
driven CD algorithm is described. Section 4 analyzes the proposed
method performance through simulations. Conclusions are reported
in Section 5.

2. PROBLEM FORMULATION

Consider that the two observed multi-band optical images have been
acquired over the same geographical area at two different times ti
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and tj . Let Yti
HR ∈ Rnλ×n denote the HR-MS/PAN image and

Y
tj
LR ∈ Rmλ×m the LR-HS image where mλ (resp., nλ) and m

(resp. n) denote the numbers of bands and pixels of the HR-MS/PAN
(resp. LR-HS) images with mλ > nλ and n > m. Assuming that
the scene has changed between their respective acquisition times,
our objective is to extract the change information contained in this
pair of dissimilar images. Due to the dissimilarity between the corre-
sponding sensors, the differences in spectral and spatial resolutions
makes the task difficult. Indeed, first, each pixel of the LR image is
related to multiple pixels of the HR image. Second, the lack of spec-
tral information in the MS/PAN image may hide some changes with
respect to the HS image. To alleviate this issue, we propose to tackle
the CD problem using a fusion-driven approach extending [8]. More
precisely, these two observed images can be viewed as degradations
of two HR-HS latent images representing the scene at times ti and
tj respectively. The joint observation model can be written as

Yti
HR = LXti + NHR

Y
tj
LR = XtjR + NLR

(1)

where Xti , Xtj ∈ Rmλ×n represent the latent HS-HR images at
time ti and tj . The matrix L ∈ Rnλ×mλ is the spectral degradation
matrix modeling the linear combination of some spectral bands for
each pixel and R = BS ∈ Rn×m is the spatial degradation ma-
trix modeling the linear combination of pixels within each spectral
band. The two matrices B and S correspond to a band-wise spatially
invariant blur and a band-wise spatial decimation operator, respec-
tively, and can be estimated beforehand as in [9]. The additive noise
matrices, NLR and NHR, gather sensor noises and modeling errors.
They are generally modeled as mutually independent (since they are
associated to different sensors) and following matrix normal distri-
butions 1 [10]

NHR ∼MNnλ,n(0nλ×n,ΛHR, In)

NLR ∼MNmλ,m(0mλ×m,ΛLR, Im).
(2)

where ΛHR and ΛLR denote the row-wise covariance matrices cor-
responding to spectral correlations between spectral bands of the HR
and LR noises. The HR and LR column-wise covariance matrices
are assumed to be identity matrices In and Im to traduce the inde-
pendence of the noise sensors with respect to pixel locations.

The use of the latent images Xti and Xtj makes the CD problem
simpler: indeed, they are pixel-wise comparable since they share the
same spatial and spectral resolutions. Moreover, they are expected
to have a certain degree of similarity since they represent the same
geographical location. As the acquisition times can be switched, this
hypothesis allows each latent image to be related to the other one
through an additive change matrix ∆X

Xti = Xtj + ∆X. (3)

This term should account for significant changes in the observed
scene and is expected to exhibit spatial sparsity. As a consequence,
the CD problem can be formulated as the joint estimation of the la-
tent image Xtj and the change matrix ∆X, where the complemen-
tary image Xti can be obtained as a by-product using the additive

1The probability density function, p(X|M,Σc,Σr) of a matrix normal distribu-
tionMNr,c(M,Σr,Σc) is given by

p (X|M,Σr,Σr) =
exp

(
− 1

2 tr
[
Σ−1
c (X−M)T Σ−1

r (X−M)
])

(2π)rc/2 |Σc|r/2 |Σr|c/2

where M ∈ Rr×c is the mean matrix, Σr ∈ Rr×r is the row covariance matrix and
Σc ∈ Rc×c is the column covariance matrix.

model (3). It is worthy to note that, when ∆X = 0, this task comes
down to the multi-band image fusion problem addressed in [11–13]
and more recently in [14–19]. Following these works, we propose
to solve this problem within a Bayesian framework by designing ap-
propriate prior distributions (i.e., regularizations) for the unknown
parameters Xtj and ∆X to be inferred. The resulting so-called ro-
bust multi-band image fusion approach is described in what follows.

3. ROBUST MULTI-BAND IMAGE FUSION

3.1. Objective function

The proposed robust fusion-driven CD approach consists of recov-
ering the latent image Xtj and the change matrix ∆X given the
forward model (1), the noise statistics assumed in (2) and the addi-
tional assumption (3) relating the two latent images. The additive
and matrix normal model for each noise matrices in (2) leads to a
matrix normal distribution for each observed Yti

HR and Y
tj
LR:

Yti
HR|X

ti ∼MNnλ,n(LXti ,ΛHR, In)

Y
tj
LR|X

tj ∼MNmλ,m(XtjBS,ΛLR, Im).
(4)

Since the sensor and model noises are assumed statistically inde-
pendent, the observed images can be assumed statistically indepen-
dent as well. Thus, their joint likelihood function can be written
as the product of the conditional distributions p(Yti

HR|X
ti) and

p(Y
tj
LR|X

tj ). The joint maximum a posteriori (MAP) estimator of
the latent and change images, assumed to be a priori independent,
can be expressed by minimizing the resulting negative log-posterior{

X̂
tj
MAP,∆X̂MAP

}
∈ Argmin

X
tj ,∆X

J (Xtj ,∆X) (5)

with

J (Xtj ,∆X) =

∥∥∥∥Λ− 1
2

LR

(
Y
tj
LR −XtjBS

)∥∥∥∥2
F

+

∥∥∥∥Λ− 1
2

HR

(
Yti

HR − L
(
Xtj + ∆X

))∥∥∥∥2
F

+ λφ1

(
Xtj

)
+ γφ2 (∆X)

(6)

where ‖·‖F stands for the Frobenius norm. The penalizing functions
φ1(·) and φ2(·) can be related to the negative log-prior distributions
of the latent and change images, respectively, and the parameters λ
and γ tune the amount of corresponding regularizations in the overall
objective function J (Xtj ,∆X).

These functions should be carefully designed to exploit prior
information regarding the parameter of interest. Problems similar
to (5) have been considered in many applications involving optical
multi-band images specially those related to image restoration. In
the context of multi-band fusion, as mentioned earlier, ∆X = 0 and
the purpose is to obtain a single HR-HS latent image fairly gathering
the information contained in the observed ones. In this context, vari-
ous penalizing functions φ1(·) have been considered in the literature,
including Tikhonov, dictionary-based and total-variation [18,19]. In
this work, a Tikhonov regularization has been chosen to maintain
computational efficiency while providing accurate results [20]. Con-
versely, in the context of CD, we propose to recover two different
latent images and φ2(·) should reflect the fact that most of the pix-
els are expected to remain unchanged in Xt1 and Xtj , i.e., most of
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the columns of the change image ∆X are expected to be null vec-
tors. Consequently, the following `2,1-norm regularization term is
considered [21, 22]

φ2 (∆X) = ‖∆X‖2,1 =

n∑
p=1

‖∆xp‖2 (7)

with ∆X = [∆x1, . . . ,∆xn].

3.2. Block coordinate algorithm

The objective function (6) is iteratively minimized following an it-
erative block coordinate descent (BCD) algorithm summarized in
Algo. 1. It iteratively minimizes the objective function with respect
to (w.r.t.) the individual variables Xtj and ∆X and thus allows the
full problem to be split into two sub-problems. These sub-problems
can be efficiently solved separately according to different strategies
as detailed below.

Algorithm 1 BCD algorithm for robust multi-band image fusion

Input: Y
tj
LR,Y

ti
HR,L,B,S,∆X0.

1: for k = 1, 2, · · · to stopping rule do
2: X

tj
k = arg minJ (Xtj ,∆Xk−1)

3: ∆Xk = arg minJ (X
tj
k ,∆X)

4: end for
Output: X̂tj ,∆X̂

3.2.1. Minimization with respect to Xtj

By setting ∆X = ∆Xk in (6), let us define the HR-MS pseudo-
observed image at time tj as

Ỹ
tj
HR,k = Yti

HR − L∆Xk. (8)

Note that this quantity does not correspond to any observation but
rather stands for the potentially observed HR-MS image at time tj
according to the current value of the change vector ∆Xk. The intro-
duction of (8) into (6) leads to the objective function w.r.t. Xtj

J (Xtj ,∆Xk−1) =

∥∥∥∥Λ− 1
2

LR

(
Y
tj
LR −XtjBS

)∥∥∥∥2
F

+

∥∥∥∥Λ− 1
2

HR

(
Ỹ
tj
HR,k − LXtj

)∥∥∥∥2
F

+ λφ1

(
Xtj

)
.

(9)

The sub-problem defined by (9) amounts to the image fusion prob-
lem considered in [16–18]. The objective is indeed to estimate a sin-
gle latent image Xtj from two observed images of the same scene.
The only difference is that one of the observed images is replaced by
a pseudo-observation. There exists a broad literature covering this
problem. Recently, [18] proposed an explicit solution by setting the
derivative w.r.t. the latent image to zero. The problem then reduces
to a Sylvester equation that can be explicitly solved under particu-
lar conditions with a far lower computational complexity than other
state-of-the-art methods (see [18] for more details).

3.2.2. Minimization with respect to ∆X

The same strategy can be followed for the second sub-problem. By
fixing Xtj = X

tj
k in (6), let us define the HR-MS change image by

∆ỸHR,k = Yti
HR − LX

tj
k . (10)

As in section 3.2.1, this unobserved quantity stands for the change
image between the HR-MS observed image and a pseudo-observed
HR-MS image resulting from the current state X

tj
k of the HR-HS

latent image estimate. The introduction of (10) in (6) leads to the
objective function w.r.t ∆X

J (X
tj
k ,∆X) =

∥∥∥∥Λ− 1
2

HR

(
∆ỸHR,k − L∆X

)∥∥∥∥2
F

+ γφ2 (∆X) .

(11)
With the particular choice of φ2(·) conducted in Section 3.1, both
data-fitting and regularization terms are convex [23], despite the lat-
ter one is not smooth. One way to achieve the unique solution is
by means of proximal algorithms [24]. In particular, the forward-
backward splitting algorithm [25] addressed problems with the same
structure as the stated one. Consequently, it does not require addi-
tional considerations but the definition of the appropriate proximal
operators and the first order derivatives (see [26] for more details).

4. EXPERIMENTAL RESULTS

This Section analyzes the performance of the proposed CD method.
Real data for CD with associated ground truth (i.e., real binary CD
mask) is rarely available. Thus, to test the proposed method, a sim-
ulation setup inspired by the Wald’s protocol [27] has been used to
generate the observed and latent images from a single reference HR-
HS image. The reference image is a pre-corrected 610 × 330 × 93
HS image of the Pavia University in Italy acquired by the ROSIS
(reflective optics system imaging spectrometer) sensor. Two spec-
tral degradations were considered: one corresponding to a 4-band
LANDSAT multi-spectral response (Scenario 1) and a 43-band av-
eraging panchromatic response (Scenario 2). The spatial degradation
response consists in a 5×5 Gaussian blur with equal down-sampling
by d = 5 in vertical and horizontal directions. The resulting HR-MS
and LR-HS images are depicted in Fig. 1 (a)-(b) for Scenario 1.
From a single HR-HS reference image, several change masks were
manually generated. For each change mask a change has been ap-
plied, for instance, by replacing the whole change mask region by
different pixels, or by rotating its content. The constructed simula-
tion dataset is composed of 225 different HR-HS pairs. By applying
the defined spatial and spectral responses in each image of the HR-
HS pair alternately, two observation image pairs of LR-MS/PAN and
HR-HS and their respective ground-truth change maps compose the
whole simulation dataset. The proposed robust fusion-based change
detection (RF) method is compared to three algorithms. They differ
in the preprocessing used to handle images with the same resolution.
In any case, CD is performed using the approach described in [7].
The first algorithm compares the spatially degraded version of the
HR-MS image with the spectrally degraded version of the LR-HS
image. The resulting LR change map is denoted as D̂WC where WC
means worst-case. The second algorithm performs a bi-cubic spatial
interpolation of the LR-HS image, spectrally degrades the result and
finally performs CD by comparison with the original HR-MS im-
age. The resulting change map is denoted as D̂ID where ID means
interpolation-degradation. The third algorithm uses the same pro-
cedure of the second one except that the order of interpolation and
degradation operations is changed. The resulting change detection
map is denoted as D̂DI where DI refers to degradation-interpolation.

The performance of CD methods is evaluated by investigating
the receiving operator characteristics (ROC) curve, which plots the
probability of false alarm (PFA) as a function of the probability of
detection (PD). Each sample of the dataset results in one ROC
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(a) (b) (c) (d) (e)

Fig. 1: Scenario 1: (a) Yti
HR, (b) Y

tj
LR, (c) X̂ti , (d) X̂tj and (e) ∆X̂

curve. The final result for each CD method is the averaging of all
dataset ROC curves. Figure 2 presents the averaged ROC curves ob-
tained with the four methods in two different scenarios correspond-
ing to HR-MS/LR-HS (Scenario 1) and HR-PAN/LR-HS (Scenario
2) image pairs.

PFA
0 0.2 0.4 0.6 0.8 1

P
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(a)
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D̂ID

(b)

Fig. 2: Final ROC curves: (a) Scenario 1 and (b) Scenario 2.

Additionally, two quantitative measures of detection perfor-
mance can be extracted from these ROC curves: the area under the
curve (AUC), corresponding to the integration of the ROC curve
and the distance (Dist.) between the interception of the ROC curve
with the diagonal line, PFA = 1 − PD, and the no detection point
(PFA = 1,PD = 0). In both cases, the better the detection the
closer to one the measure.

For both scenarios, the proposed method shows higher detection

Table 1: Detection performance (AUC and normalized distance).

D̂RF D̂WC D̂DI D̂ID

Scenario 1
AUC 0.9974 0.9809 0.8724 0.8850

Dist. 0.9944 0.9356 0.7926 0.8045

Scenario 2
AUC 0.9936 0.9777 0.8389 0.8389

Dist. 0.9896 0.9249 0.7595 0.7640

performance than the other methods. To illustrate the high preci-
sion and the benefits of the proposed algorithm, Fig. 1 represents
one example of the results recovered by the proposed CD method
in the Scenario 1. In this example, two HR-MS and LR-HS ob-
served images have been fused producing the pair of latent images(
X̂ti , X̂ti

)
(panels (c) and (d)) and the change image ∆X̂ (panel

(e)). Note that complementary simulation results are available in
[26].

5. CONCLUSIONS

This paper proposed a new change detection method to deal with
multi-band optical images with different spatial and spectral resolu-
tions. Changes may be thought of as the differences between two
unknown latent images of same (high) spatial and spectral resolu-
tions. Based on the degradation model relating each observed im-
age to its associated latent one, a Bayesian estimation method was
adopted to infer the two latent images and the associated change vec-
tor. The estimation problem was formulated as an inverse problem
and solved iteratively using a block coordinate descent algorithm.
By fixing alternatively one of the two variables, the algorithm al-
lowed the problem to be split into two distinct sub-problems, the es-
timation of one latent image and the estimation of the change vector.
The first sub-problem was a classical image fusion problem benefit-
ing from an explicit solution. The second sub-problem was regular-
ized taking into account the spatial sparsity of significant changes.
At the end, the second latent image can be estimated by subtracting
the estimated latent image by the estimated change vector. The pro-
posed method showed far higher detection performance than naive
approaches which would enforce the data to be of the same low spa-
tial and spectral resolution.
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